WebResearchRetriever#
- class langchain_community.retrievers.web_research.WebResearchRetriever[source]#
Bases:
BaseRetriever
Google Search API retriever.
Initialize the retriever.
Note
WebResearchRetriever implements the standard
Runnable Interface
. πThe
Runnable Interface
has additional methods that are available on runnables, such aswith_types
,with_retry
,assign
,bind
,get_graph
, and more.- param allow_dangerous_requests: bool = False#
A flag to force users to acknowledge the risks of SSRF attacks when using this retriever.
Users should set this flag to True if they have taken the necessary precautions to prevent SSRF attacks when using this retriever.
For example, users can run the requests through a properly configured proxy and prevent the crawler from accidentally crawling internal resources.
- param metadata: Dict[str, Any] | None = None#
Optional metadata associated with the retriever. Defaults to None. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.
- param num_search_results: int = 1#
Number of pages per Google search
- param search: GoogleSearchAPIWrapper [Required]#
Google Search API Wrapper
- param tags: List[str] | None = None#
Optional list of tags associated with the retriever. Defaults to None. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.
- param text_splitter: TextSplitter = <langchain_text_splitters.character.RecursiveCharacterTextSplitter object>#
Text splitter for splitting web pages into chunks
- param trust_env: bool = False#
Whether to use the http_proxy/https_proxy env variables or check .netrc for proxy configuration
- param url_database: List[str] [Optional]#
List of processed URLs
- param vectorstore: VectorStore [Required]#
Vector store for storing web pages
- async abatch(inputs: List[Input], config: RunnableConfig | List[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) List[Output] #
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters:
inputs (List[Input]) β A list of inputs to the Runnable.
config (RunnableConfig | List[RunnableConfig] | None) β A config to use when invoking the Runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.
return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the Runnable.
- Returns:
A list of outputs from the Runnable.
- Return type:
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) AsyncIterator[Tuple[int, Output | Exception]] #
Run ainvoke in parallel on a list of inputs, yielding results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the Runnable.
config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the Runnable. The config supports standard keys like βtagsβ, βmetadataβ for tracing purposes, βmax_concurrencyβ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.
return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the Runnable.
- Yields:
A tuple of the index of the input and the output from the Runnable.
- Return type:
AsyncIterator[Tuple[int, Output | Exception]]
- async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, run_name: str | None = None, **kwargs: Any) List[Document] #
Deprecated since version langchain-core==0.1.46: Use
ainvoke
instead.Asynchronously get documents relevant to a query.
Users should favor using .ainvoke or .abatch rather than aget_relevant_documents directly.
- Parameters:
query (str) β string to find relevant documents for.
callbacks (Callbacks) β Callback manager or list of callbacks.
tags (Optional[List[str]]) β Optional list of tags associated with the retriever. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
metadata (Optional[Dict[str, Any]]) β Optional metadata associated with the retriever. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
run_name (Optional[str]) β Optional name for the run. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
List[Document]
- async ainvoke(input: str, config: RunnableConfig | None = None, **kwargs: Any) List[Document] #
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
- Parameters:
input (str) β The query string.
config (RunnableConfig | None) β Configuration for the retriever. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
List[Document]
Examples:
await retriever.ainvoke("query")
- async astream(input: Input, config: RunnableConfig | None = None, **kwargs: Any | None) AsyncIterator[Output] #
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- Parameters:
input (Input) β The input to the Runnable.
config (RunnableConfig | None) β The config to use for the Runnable. Defaults to None.
kwargs (Any | None) β Additional keyword arguments to pass to the Runnable.
- Yields:
The output of the Runnable.
- Return type:
AsyncIterator[Output]
- astream_events(input: Any, config: RunnableConfig | None = None, *, version: Literal['v1', 'v2'], include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any) AsyncIterator[StandardStreamEvent | CustomStreamEvent] #
Beta
This API is in beta and may change in the future.
Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name
: str - The name of the Runnable that generated the event.run_id
: str - randomly generated ID associated with the given execution ofthe Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - The IDs of the parent runnables thatgenerated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - The tags of the Runnable that generatedthe event.
metadata
: Optional[Dict[str, Any]] - The metadata of the Runnablethat generated the event.
data
: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{βmessagesβ: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=βhelloβ)
on_chat_model_end
[model name]
{βmessagesβ: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=βhello worldβ)
on_llm_start
[model name]
{βinputβ: βhelloβ}
on_llm_stream
[model name]
βHelloβ
on_llm_end
[model name]
βHello human!β
on_chain_start
format_docs
on_chain_stream
format_docs
βhello world!, goodbye world!β
on_chain_end
format_docs
[Document(β¦)]
βhello world!, goodbye world!β
on_tool_start
some_tool
{βxβ: 1, βyβ: β2β}
on_tool_end
some_tool
{βxβ: 1, βyβ: β2β}
on_retriever_start
[retriever name]
{βqueryβ: βhelloβ}
on_retriever_end
[retriever name]
{βqueryβ: βhelloβ}
[Document(β¦), ..]
on_prompt_start
[template_name]
{βquestionβ: βhelloβ}
on_prompt_end
[template_name]
{βquestionβ: βhelloβ}
ChatPromptValue(messages: [SystemMessage, β¦])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) β The input to the Runnable.
config (RunnableConfig | None) β The config to use for the Runnable.
version (Literal['v1', 'v2']) β The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.
include_names (Sequence[str] | None) β Only include events from runnables with matching names.
include_types (Sequence[str] | None) β Only include events from runnables with matching types.
include_tags (Sequence[str] | None) β Only include events from runnables with matching tags.
exclude_names (Sequence[str] | None) β Exclude events from runnables with matching names.
exclude_types (Sequence[str] | None) β Exclude events from runnables with matching types.
exclude_tags (Sequence[str] | None) β Exclude events from runnables with matching tags.
kwargs (Any) β Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Yields:
An async stream of StreamEvents.
- Raises:
NotImplementedError β If the version is not v1 or v2.
- Return type:
AsyncIterator[StandardStreamEvent | CustomStreamEvent]
- batch(inputs: List[Input], config: RunnableConfig | List[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) List[Output] #
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters:
inputs (List[Input]) β
config (RunnableConfig | List[RunnableConfig] | None) β
return_exceptions (bool) β
kwargs (Any | None) β
- Return type:
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) Iterator[Tuple[int, Output | Exception]] #
Run invoke in parallel on a list of inputs, yielding results as they complete.
- Parameters:
inputs (Sequence[Input]) β
config (RunnableConfig | Sequence[RunnableConfig] | None) β
return_exceptions (bool) β
kwargs (Any | None) β
- Return type:
Iterator[Tuple[int, Output | Exception]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) RunnableSerializable[Input, Output] #
Configure alternatives for Runnables that can be set at runtime.
- Parameters:
which (ConfigurableField) β The ConfigurableField instance that will be used to select the alternative.
default_key (str) β The default key to use if no alternative is selected. Defaults to βdefaultβ.
prefix_keys (bool) β Whether to prefix the keys with the ConfigurableField id. Defaults to False.
**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) β A dictionary of keys to Runnable instances or callables that return Runnable instances.
- Returns:
A new Runnable with the alternatives configured.
- Return type:
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) RunnableSerializable[Input, Output] #
Configure particular Runnable fields at runtime.
- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) β A dictionary of ConfigurableField instances to configure.
- Returns:
A new Runnable with the fields configured.
- Return type:
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- classmethod from_llm(vectorstore: ~langchain_core.vectorstores.base.VectorStore, llm: ~langchain_core.language_models.llms.BaseLLM, search: ~langchain_community.utilities.google_search.GoogleSearchAPIWrapper, prompt: ~langchain_core.prompts.base.BasePromptTemplate | None = None, num_search_results: int = 1, text_splitter: ~langchain_text_splitters.character.RecursiveCharacterTextSplitter = <langchain_text_splitters.character.RecursiveCharacterTextSplitter object>, trust_env: bool = False, allow_dangerous_requests: bool = False) WebResearchRetriever [source]#
Initialize from llm using default template.
- Parameters:
vectorstore (VectorStore) β Vector store for storing web pages
llm (BaseLLM) β llm for search question generation
search (GoogleSearchAPIWrapper) β GoogleSearchAPIWrapper
prompt (BasePromptTemplate | None) β prompt to generating search questions
num_search_results (int) β Number of pages per Google search
text_splitter (RecursiveCharacterTextSplitter) β Text splitter for splitting web pages into chunks
trust_env (bool) β Whether to use the http_proxy/https_proxy env variables or check .netrc for proxy configuration
allow_dangerous_requests (bool) β
- Returns:
WebResearchRetriever
- Return type:
- get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, run_name: str | None = None, **kwargs: Any) List[Document] #
Deprecated since version langchain-core==0.1.46: Use
invoke
instead.Retrieve documents relevant to a query.
Users should favor using .invoke or .batch rather than get_relevant_documents directly.
- Parameters:
query (str) β string to find relevant documents for.
callbacks (Callbacks) β Callback manager or list of callbacks. Defaults to None.
tags (Optional[List[str]]) β Optional list of tags associated with the retriever. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
metadata (Optional[Dict[str, Any]]) β Optional metadata associated with the retriever. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
run_name (Optional[str]) β Optional name for the run. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
List[Document]
- invoke(input: str, config: RunnableConfig | None = None, **kwargs: Any) List[Document] #
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
- Parameters:
input (str) β The query string.
config (RunnableConfig | None) β Configuration for the retriever. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
List[Document]
Examples:
retriever.invoke("query")
- search_tool(query: str, num_search_results: int = 1) List[dict] [source]#
Returns num_search_results pages per Google search.
- Parameters:
query (str) β
num_search_results (int) β
- Return type:
List[dict]
- stream(input: Input, config: RunnableConfig | None = None, **kwargs: Any | None) Iterator[Output] #
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- Parameters:
input (Input) β The input to the Runnable.
config (RunnableConfig | None) β The config to use for the Runnable. Defaults to None.
kwargs (Any | None) β Additional keyword arguments to pass to the Runnable.
- Yields:
The output of the Runnable.
- Return type:
Iterator[Output]
- to_json() SerializedConstructor | SerializedNotImplemented #
Serialize the Runnable to JSON.
- Returns:
A JSON-serializable representation of the Runnable.
- Return type: