RecursiveCharacterTextSplitter#

class langchain_text_splitters.character.RecursiveCharacterTextSplitter(separators: List[str] | None = None, keep_separator: bool = True, is_separator_regex: bool = False, **kwargs: Any)[source]#

Splitting text by recursively look at characters.

Recursively tries to split by different characters to find one that works.

Create a new TextSplitter.

Methods

__init__([separators,Β keep_separator,Β ...])

Create a new TextSplitter.

atransform_documents(documents,Β **kwargs)

Asynchronously transform a list of documents.

create_documents(texts[,Β metadatas])

Create documents from a list of texts.

from_huggingface_tokenizer(tokenizer,Β **kwargs)

Text splitter that uses HuggingFace tokenizer to count length.

from_language(language,Β **kwargs)

from_tiktoken_encoder([encoding_name,Β ...])

Text splitter that uses tiktoken encoder to count length.

get_separators_for_language(language)

split_documents(documents)

Split documents.

split_text(text)

Split text into multiple components.

transform_documents(documents,Β **kwargs)

Transform sequence of documents by splitting them.

Parameters:
  • separators (Optional[List[str]]) –

  • keep_separator (bool) –

  • is_separator_regex (bool) –

  • kwargs (Any) –

__init__(separators: List[str] | None = None, keep_separator: bool = True, is_separator_regex: bool = False, **kwargs: Any) β†’ None[source]#

Create a new TextSplitter.

Parameters:
  • separators (List[str] | None) –

  • keep_separator (bool) –

  • is_separator_regex (bool) –

  • kwargs (Any) –

Return type:

None

async atransform_documents(documents: Sequence[Document], **kwargs: Any) β†’ Sequence[Document]#

Asynchronously transform a list of documents.

Parameters:
  • documents (Sequence[Document]) – A sequence of Documents to be transformed.

  • kwargs (Any) –

Returns:

A sequence of transformed Documents.

Return type:

Sequence[Document]

create_documents(texts: List[str], metadatas: List[dict] | None = None) β†’ List[Document]#

Create documents from a list of texts.

Parameters:
  • texts (List[str]) –

  • metadatas (List[dict] | None) –

Return type:

List[Document]

classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) β†’ TextSplitter#

Text splitter that uses HuggingFace tokenizer to count length.

Parameters:
  • tokenizer (Any) –

  • kwargs (Any) –

Return type:

TextSplitter

classmethod from_language(language: Language, **kwargs: Any) β†’ RecursiveCharacterTextSplitter[source]#
Parameters:
  • language (Language) –

  • kwargs (Any) –

Return type:

RecursiveCharacterTextSplitter

classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) β†’ TS#

Text splitter that uses tiktoken encoder to count length.

Parameters:
  • encoding_name (str) –

  • model_name (str | None) –

  • allowed_special (Literal['all'] | ~typing.AbstractSet[str]) –

  • disallowed_special (Literal['all'] | ~typing.Collection[str]) –

  • kwargs (Any) –

Return type:

TS

static get_separators_for_language(language: Language) β†’ List[str][source]#
Parameters:

language (Language) –

Return type:

List[str]

split_documents(documents: Iterable[Document]) β†’ List[Document]#

Split documents.

Parameters:

documents (Iterable[Document]) –

Return type:

List[Document]

split_text(text: str) β†’ List[str][source]#

Split text into multiple components.

Parameters:

text (str) –

Return type:

List[str]

transform_documents(documents: Sequence[Document], **kwargs: Any) β†’ Sequence[Document]#

Transform sequence of documents by splitting them.

Parameters:
  • documents (Sequence[Document]) –

  • kwargs (Any) –

Return type:

Sequence[Document]

Examples using RecursiveCharacterTextSplitter