LlamaCppEmbeddings#
- class langchain_community.embeddings.llamacpp.LlamaCppEmbeddings[source]#
Bases:
BaseModel
,Embeddings
llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: abetlen/llama-cpp-python
Example
from langchain_community.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param f16_kv: bool = False#
Use half-precision for key/value cache.
- param logits_all: bool = False#
Return logits for all tokens, not just the last token.
- param model_path: str [Required]#
- param n_batch: int | None = 512#
Number of tokens to process in parallel. Should be a number between 1 and n_ctx.
- param n_ctx: int = 512#
Token context window.
- param n_gpu_layers: int | None = None#
Number of layers to be loaded into gpu memory. Default None.
- param n_parts: int = -1#
Number of parts to split the model into. If -1, the number of parts is automatically determined.
- param n_threads: int | None = None#
Number of threads to use. If None, the number of threads is automatically determined.
- param seed: int = -1#
Seed. If -1, a random seed is used.
- param use_mlock: bool = False#
Force system to keep model in RAM.
- param verbose: bool = True#
Print verbose output to stderr.
- param vocab_only: bool = False#
Only load the vocabulary, no weights.
- async aembed_documents(texts: List[str]) List[List[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) – List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] #
Asynchronous Embed query text.
- Parameters:
text (str) – Text to embed.
- Returns:
Embedding.
- Return type:
List[float]
Examples using LlamaCppEmbeddings