AscendEmbeddings#
- class langchain_community.embeddings.ascend.AscendEmbeddings[source]#
Bases:
Embeddings
,BaseModel
Ascend NPU accelerate Embedding model
Please ensure that you have installed CANN and torch_npu.
Example:
from langchain_community.embeddings import AscendEmbeddings model = AscendEmbeddings(model_path=<path_to_model>,
device_id=0, query_instruction=βRepresent this sentence for searching relevant passages: β
)
- param device_id: int = 0#
Unstruntion to used for embedding query.
- param document_instruction: str = ''#
- param model: Any = None#
- param model_path: str [Required]#
Ascend NPU device id.
- param pooling_method: str | None = 'cls'#
- param query_instruction: str = ''#
Unstruntion to used for embedding document.
- param tokenizer: Any = None#
- param use_fp16: bool = True#
- async aembed_documents(texts: List[str]) List[List[float]] #
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] #
Asynchronous Embed query text.
- Parameters:
text (str) β Text to embed.
- Returns:
Embedding.
- Return type:
List[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embed search docs.
- Parameters:
texts (List[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]