CSVLoader#

class langchain_community.document_loaders.csv_loader.CSVLoader(file_path: str | Path, source_column: str | None = None, metadata_columns: Sequence[str] = (), csv_args: Dict | None = None, encoding: str | None = None, autodetect_encoding: bool = False)[source]#

Load a CSV file into a list of Documents.

Each document represents one row of the CSV file. Every row is converted into a key/value pair and outputted to a new line in the document’s page_content.

The source for each document loaded from csv is set to the value of the file_path argument for all documents by default. You can override this by setting the source_column argument to the name of a column in the CSV file. The source of each document will then be set to the value of the column with the name specified in source_column.

Output Example:
column1: value1
column2: value2
column3: value3
Instantiate:
from langchain_community.document_loaders import CSVLoader

loader = CSVLoader(file_path='./hw_200.csv',
    csv_args={
    'delimiter': ',',
    'quotechar': '"',
    'fieldnames': ['Index', 'Height', 'Weight']
})
Load:
docs = loader.load()
print(docs[0].page_content[:100])
print(docs[0].metadata)
Index: Index
Height: Height(Inches)"
Weight: "Weight(Pounds)"
{'source': './hw_200.csv', 'row': 0}
Async load:
docs = await loader.aload()
print(docs[0].page_content[:100])
print(docs[0].metadata)
Index: Index
Height: Height(Inches)"
Weight: "Weight(Pounds)"
{'source': './hw_200.csv', 'row': 0}
Lazy load:
docs = []
docs_lazy = loader.lazy_load()

# async variant:
# docs_lazy = await loader.alazy_load()

for doc in docs_lazy:
    docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
Index: Index
Height: Height(Inches)"
Weight: "Weight(Pounds)"
{'source': './hw_200.csv', 'row': 0}
Parameters:
  • file_path (str | Path) – The path to the CSV file.

  • source_column (str | None) – The name of the column in the CSV file to use as the source. Optional. Defaults to None.

  • metadata_columns (Sequence[str]) – A sequence of column names to use as metadata. Optional.

  • csv_args (Dict | None) – A dictionary of arguments to pass to the csv.DictReader. Optional. Defaults to None.

  • encoding (str | None) – The encoding of the CSV file. Optional. Defaults to None.

  • autodetect_encoding (bool) – Whether to try to autodetect the file encoding.

Methods

__init__(file_path[,Β source_column,Β ...])

param file_path:

The path to the CSV file.

alazy_load()

A lazy loader for Documents.

aload()

Load data into Document objects.

lazy_load()

A lazy loader for Documents.

load()

Load data into Document objects.

load_and_split([text_splitter])

Load Documents and split into chunks.

__init__(file_path: str | Path, source_column: str | None = None, metadata_columns: Sequence[str] = (), csv_args: Dict | None = None, encoding: str | None = None, autodetect_encoding: bool = False)[source]#
Parameters:
  • file_path (str | Path) – The path to the CSV file.

  • source_column (str | None) – The name of the column in the CSV file to use as the source. Optional. Defaults to None.

  • metadata_columns (Sequence[str]) – A sequence of column names to use as metadata. Optional.

  • csv_args (Dict | None) – A dictionary of arguments to pass to the csv.DictReader. Optional. Defaults to None.

  • encoding (str | None) – The encoding of the CSV file. Optional. Defaults to None.

  • autodetect_encoding (bool) – Whether to try to autodetect the file encoding.

async alazy_load() β†’ AsyncIterator[Document]#

A lazy loader for Documents.

Return type:

AsyncIterator[Document]

async aload() β†’ List[Document]#

Load data into Document objects.

Return type:

List[Document]

lazy_load() β†’ Iterator[Document][source]#

A lazy loader for Documents.

Return type:

Iterator[Document]

load() β†’ List[Document]#

Load data into Document objects.

Return type:

List[Document]

load_and_split(text_splitter: TextSplitter | None = None) β†’ List[Document]#

Load Documents and split into chunks. Chunks are returned as Documents.

Do not override this method. It should be considered to be deprecated!

Parameters:

text_splitter (Optional[TextSplitter]) – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter.

Returns:

List of Documents.

Return type:

List[Document]

Examples using CSVLoader