SpacyTextSplitter#

class langchain_text_splitters.spacy.SpacyTextSplitter(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', max_length: int = 1000000, **kwargs: Any)[source]#

Splitting text using Spacy package.

Per default, Spacyโ€™s en_core_web_sm model is used and its default max_length is 1000000 (it is the length of maximum character this model takes which can be increased for large files). For a faster, but potentially less accurate splitting, you can use pipeline=โ€™sentencizerโ€™.

Initialize the spacy text splitter.

Methods

__init__([separator,ย pipeline,ย max_length])

Initialize the spacy text splitter.

atransform_documents(documents,ย **kwargs)

Asynchronously transform a list of documents.

create_documents(texts[,ย metadatas])

Create documents from a list of texts.

from_huggingface_tokenizer(tokenizer,ย **kwargs)

Text splitter that uses HuggingFace tokenizer to count length.

from_tiktoken_encoder([encoding_name,ย ...])

Text splitter that uses tiktoken encoder to count length.

split_documents(documents)

Split documents.

split_text(text)

Split incoming text and return chunks.

transform_documents(documents,ย **kwargs)

Transform sequence of documents by splitting them.

Parameters:
  • separator (str) โ€“

  • pipeline (str) โ€“

  • max_length (int) โ€“

  • kwargs (Any) โ€“

__init__(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', max_length: int = 1000000, **kwargs: Any) โ†’ None[source]#

Initialize the spacy text splitter.

Parameters:
  • separator (str) โ€“

  • pipeline (str) โ€“

  • max_length (int) โ€“

  • kwargs (Any) โ€“

Return type:

None

async atransform_documents(documents: Sequence[Document], **kwargs: Any) โ†’ Sequence[Document]#

Asynchronously transform a list of documents.

Parameters:
  • documents (Sequence[Document]) โ€“ A sequence of Documents to be transformed.

  • kwargs (Any) โ€“

Returns:

A sequence of transformed Documents.

Return type:

Sequence[Document]

create_documents(texts: List[str], metadatas: List[dict] | None = None) โ†’ List[Document]#

Create documents from a list of texts.

Parameters:
  • texts (List[str]) โ€“

  • metadatas (List[dict] | None) โ€“

Return type:

List[Document]

classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) โ†’ TextSplitter#

Text splitter that uses HuggingFace tokenizer to count length.

Parameters:
  • tokenizer (Any) โ€“

  • kwargs (Any) โ€“

Return type:

TextSplitter

classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) โ†’ TS#

Text splitter that uses tiktoken encoder to count length.

Parameters:
  • encoding_name (str) โ€“

  • model_name (str | None) โ€“

  • allowed_special (Literal['all'] | ~typing.AbstractSet[str]) โ€“

  • disallowed_special (Literal['all'] | ~typing.Collection[str]) โ€“

  • kwargs (Any) โ€“

Return type:

TS

split_documents(documents: Iterable[Document]) โ†’ List[Document]#

Split documents.

Parameters:

documents (Iterable[Document]) โ€“

Return type:

List[Document]

split_text(text: str) โ†’ List[str][source]#

Split incoming text and return chunks.

Parameters:

text (str) โ€“

Return type:

List[str]

transform_documents(documents: Sequence[Document], **kwargs: Any) โ†’ Sequence[Document]#

Transform sequence of documents by splitting them.

Parameters:
  • documents (Sequence[Document]) โ€“

  • kwargs (Any) โ€“

Return type:

Sequence[Document]

Examples using SpacyTextSplitter