PineconeEmbeddings#
- class langchain_pinecone.embeddings.PineconeEmbeddings[source]#
Bases:
BaseModel
,Embeddings
PineconeEmbeddings embedding model.
Example
from langchain_pinecone import PineconeEmbeddings model = PineconeEmbeddings(model="multilingual-e5-large")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param batch_size: int | None = None#
Batch size for embedding documents.
- param dimension: int | None = None#
- param document_params: Dict [Optional]#
Parameters for embedding document
- param model: str [Required]#
Model to use for example βmultilingual-e5-largeβ.
- param pinecone_api_key: SecretStr | None = None#
- Constraints:
type = string
writeOnly = True
format = password
- param query_params: Dict [Optional]#
Parameters for embedding query.
- param show_progress_bar: bool = False#
- async aembed_documents(texts: List[str]) List[List[float]] [source]#
Asynchronous Embed search docs.
- Parameters:
texts (List[str]) β List of text to embed.
- Returns:
List of embeddings.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] [source]#
Asynchronously embed query text.
- Parameters:
text (str) β
- Return type:
List[float]