"""Azure OpenAI embeddings wrapper."""
from __future__ import annotations
import os
from typing import Callable, Dict, Optional, Union
import openai
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_openai.embeddings.base import OpenAIEmbeddings
[docs]class AzureOpenAIEmbeddings(OpenAIEmbeddings):
"""AzureOpenAI embedding model integration.
Setup:
To access AzureOpenAI embedding models you'll need to create an Azure account,
get an API key, and install the `langchain-openai` integration package.
You’ll need to have an Azure OpenAI instance deployed.
You can deploy a version on Azure Portal following this
[guide](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/create-resource?pivots=web-portal).
Once you have your instance running, make sure you have the name of your
instance and key. You can find the key in the Azure Portal,
under the “Keys and Endpoint” section of your instance.
.. code-block:: bash
pip install -U langchain_openai
# Set up your environment variables (or pass them directly to the model)
export AZURE_OPENAI_API_KEY="your-api-key"
export AZURE_OPENAI_ENDPOINT="https://<your-endpoint>.openai.azure.com/"
export AZURE_OPENAI_API_VERSION="2024-02-01"
Key init args — completion params:
model: str
Name of AzureOpenAI model to use.
dimensions: Optional[int]
Number of dimensions for the embeddings. Can be specified only
if the underlying model supports it.
Key init args — client params:
api_key: Optional[SecretStr]
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_openai import AzureOpenAIEmbeddings
embeddings = AzureOpenAIEmbeddings(
model="text-embedding-3-large"
# dimensions: Optional[int] = None, # Can specify dimensions with new text-embedding-3 models
# azure_endpoint="https://<your-endpoint>.openai.azure.com/", If not provided, will read env variable AZURE_OPENAI_ENDPOINT
# api_key=... # Can provide an API key directly. If missing read env variable AZURE_OPENAI_API_KEY
# openai_api_version=..., # If not provided, will read env variable AZURE_OPENAI_API_VERSION
)
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Async:
.. code-block:: python
vector = await embed.aembed_query(input_text)
print(vector[:3])
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
""" # noqa: E501
azure_endpoint: Union[str, None] = None
"""Your Azure endpoint, including the resource.
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
Example: `https://example-resource.azure.openai.com/`
"""
deployment: Optional[str] = Field(default=None, alias="azure_deployment")
"""A model deployment.
If given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints.
"""
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
azure_ad_token: Optional[SecretStr] = None
"""Your Azure Active Directory token.
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
"""
azure_ad_token_provider: Union[Callable[[], str], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every request.
"""
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
validate_base_url: bool = True
chunk_size: int = 2048
"""Maximum number of texts to embed in each batch"""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
# Check OPENAI_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
openai_api_key = (
values["openai_api_key"]
or os.getenv("AZURE_OPENAI_API_KEY")
or os.getenv("OPENAI_API_KEY")
)
values["openai_api_key"] = (
convert_to_secret_str(openai_api_key) if openai_api_key else None
)
values["openai_api_base"] = (
values["openai_api_base"]
if "openai_api_base" in values
else os.getenv("OPENAI_API_BASE")
)
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
"OPENAI_API_VERSION", default="2023-05-15"
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
)
values["openai_organization"] = (
values["openai_organization"]
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
values["openai_proxy"] = get_from_dict_or_env(
values, "openai_proxy", "OPENAI_PROXY", default=""
)
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
"AZURE_OPENAI_ENDPOINT"
)
azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN")
values["azure_ad_token"] = (
convert_to_secret_str(azure_ad_token) if azure_ad_token else None
)
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
if "/openai" not in openai_api_base:
values["openai_api_base"] += "/openai"
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`). "
)
if values["deployment"]:
raise ValueError(
"As of openai>=1.0.0, if `deployment` (or alias "
"`azure_deployment`) is specified then "
"`openai_api_base` (or alias `base_url`) should not be. "
"Instead use `deployment` (or alias `azure_deployment`) "
"and `azure_endpoint`."
)
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment"],
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
else None
),
"azure_ad_token": (
values["azure_ad_token"].get_secret_value()
if values["azure_ad_token"]
else None
),
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.AzureOpenAI(
**client_params, **sync_specific
).embeddings
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncAzureOpenAI(
**client_params, **async_specific
).embeddings
return values
@property
def _llm_type(self) -> str:
return "azure-openai-chat"