Source code for langchain_ollama.embeddings
from typing import (
List,
Optional,
)
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from ollama import AsyncClient, Client
[docs]class OllamaEmbeddings(BaseModel, Embeddings):
"""Ollama embedding model integration.
Set up a local Ollama instance:
Install the Ollama package and set up a local Ollama instance
using the instructions here: https://github.com/ollama/ollama .
You will need to choose a model to serve.
You can view a list of available models via the model library (https://ollama.com/library).
To fetch a model from the Ollama model library use ``ollama pull <name-of-model>``.
For example, to pull the llama3 model:
.. code-block:: bash
ollama pull llama3
This will download the default tagged version of the model.
Typically, the default points to the latest, smallest sized-parameter model.
* On Mac, the models will be downloaded to ~/.ollama/models
* On Linux (or WSL), the models will be stored at /usr/share/ollama/.ollama/models
You can specify the exact version of the model of interest
as such ``ollama pull vicuna:13b-v1.5-16k-q4_0``.
To view pulled models:
.. code-block:: bash
ollama list
To start serving:
.. code-block:: bash
ollama serve
View the Ollama documentation for more commands.
.. code-block:: bash
ollama help
Install the langchain-ollama integration package:
.. code-block:: bash
pip install -U langchain_ollama
Key init args — completion params:
model: str
Name of Ollama model to use.
base_url: Optional[str]
Base url the model is hosted under.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_ollama import OllamaEmbeddings
embed = OllamaEmbeddings(
model="llama3"
)
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Async:
.. code-block:: python
vector = await embed.aembed_query(input_text)
print(vector[:3])
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
""" # noqa: E501
model: str
"""Model name to use."""
base_url: Optional[str] = None
"""Base url the model is hosted under."""
client_kwargs: Optional[dict] = {}
"""Additional kwargs to pass to the httpx Client.
For a full list of the params, see [this link](https://pydoc.dev/httpx/latest/httpx.Client.html)
"""
_client: Client = Field(default=None)
"""
The client to use for making requests.
"""
_async_client: AsyncClient = Field(default=None)
"""
The async client to use for making requests.
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=False, skip_on_failure=True)
def _set_clients(cls, values: dict) -> dict:
"""Set clients to use for ollama."""
values["_client"] = Client(host=values["base_url"], **values["client_kwargs"])
values["_async_client"] = AsyncClient(
host=values["base_url"], **values["client_kwargs"]
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
embedded_docs = self._client.embed(self.model, texts)["embeddings"]
return embedded_docs
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
return self.embed_documents([text])[0]
[docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
embedded_docs = (await self._async_client.embed(self.model, texts))[
"embeddings"
]
return embedded_docs
[docs] async def aembed_query(self, text: str) -> List[float]:
"""Embed query text."""
return (await self.aembed_documents([text]))[0]