Source code for langchain_huggingface.llms.huggingface_pipeline

from __future__ import annotations  # type: ignore[import-not-found]

import importlib.util
import logging
from typing import Any, Iterator, List, Mapping, Optional

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Extra

DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = (
    "text2text-generation",
    "text-generation",
    "summarization",
    "translation",
)
DEFAULT_BATCH_SIZE = 4

logger = logging.getLogger(__name__)


[docs]class HuggingFacePipeline(BaseLLM): """HuggingFace Pipeline API. To use, you should have the ``transformers`` python package installed. Only supports `text-generation`, `text2text-generation`, `summarization` and `translation` for now. Example using from_model_id: .. code-block:: python from langchain_huggingface import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}, ) Example passing pipeline in directly: .. code-block:: python from langchain_huggingface import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe) """ pipeline: Any #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name to use.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" pipeline_kwargs: Optional[dict] = None """Keyword arguments passed to the pipeline.""" batch_size: int = DEFAULT_BATCH_SIZE """Batch size to use when passing multiple documents to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid
[docs] @classmethod def from_model_id( cls, model_id: str, task: str, backend: str = "default", device: Optional[int] = -1, device_map: Optional[str] = None, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, batch_size: int = DEFAULT_BATCH_SIZE, **kwargs: Any, ) -> HuggingFacePipeline: """Construct the pipeline object from model_id and task.""" try: from transformers import ( # type: ignore[import] AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers import pipeline as hf_pipeline # type: ignore[import] except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": if backend == "openvino": try: from optimum.intel.openvino import ( # type: ignore[import] OVModelForCausalLM, ) except ImportError: raise ValueError( "Could not import optimum-intel python package. " "Please install it with: " "pip install 'optimum[openvino,nncf]' " ) try: # use local model model = OVModelForCausalLM.from_pretrained( model_id, **_model_kwargs ) except Exception: # use remote model model = OVModelForCausalLM.from_pretrained( model_id, export=True, **_model_kwargs ) else: model = AutoModelForCausalLM.from_pretrained( model_id, **_model_kwargs ) elif task in ("text2text-generation", "summarization", "translation"): if backend == "openvino": try: from optimum.intel.openvino import OVModelForSeq2SeqLM except ImportError: raise ValueError( "Could not import optimum-intel python package. " "Please install it with: " "pip install 'optimum[openvino,nncf]' " ) try: # use local model model = OVModelForSeq2SeqLM.from_pretrained( model_id, **_model_kwargs ) except Exception: # use remote model model = OVModelForSeq2SeqLM.from_pretrained( model_id, export=True, **_model_kwargs ) else: model = AutoModelForSeq2SeqLM.from_pretrained( model_id, **_model_kwargs ) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ValueError( f"Could not load the {task} model due to missing dependencies." ) from e if tokenizer.pad_token is None: tokenizer.pad_token_id = model.config.eos_token_id if ( ( getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False) ) and device is not None and backend == "default" ): logger.warning( f"Setting the `device` argument to None from {device} to avoid " "the error caused by attempting to move the model that was already " "loaded on the GPU using the Accelerate module to the same or " "another device." ) device = None if ( device is not None and importlib.util.find_spec("torch") is not None and backend == "default" ): import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device_map is not None and device < 0: device = None if device is not None and device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 (default) for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) if device is not None and device_map is not None and backend == "openvino": logger.warning("Please set device for OpenVINO through: `model_kwargs`") if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } _pipeline_kwargs = pipeline_kwargs or {} pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, device_map=device_map, batch_size=batch_size, model_kwargs=_model_kwargs, **_pipeline_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return cls( pipeline=pipeline, model_id=model_id, model_kwargs=_model_kwargs, pipeline_kwargs=_pipeline_kwargs, batch_size=batch_size, **kwargs, )
@property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, "pipeline_kwargs": self.pipeline_kwargs, } @property def _llm_type(self) -> str: return "huggingface_pipeline" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: # List to hold all results text_generations: List[str] = [] pipeline_kwargs = kwargs.get("pipeline_kwargs", {}) skip_prompt = kwargs.get("skip_prompt", False) for i in range(0, len(prompts), self.batch_size): batch_prompts = prompts[i : i + self.batch_size] # Process batch of prompts responses = self.pipeline( batch_prompts, **pipeline_kwargs, ) # Process each response in the batch for j, response in enumerate(responses): if isinstance(response, list): # if model returns multiple generations, pick the top one response = response[0] if self.pipeline.task == "text-generation": text = response["generated_text"] elif self.pipeline.task == "text2text-generation": text = response["generated_text"] elif self.pipeline.task == "summarization": text = response["summary_text"] elif self.pipeline.task in "translation": text = response["translation_text"] else: raise ValueError( f"Got invalid task {self.pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if skip_prompt: text = text[len(batch_prompts[j]) :] # Append the processed text to results text_generations.append(text) return LLMResult( generations=[[Generation(text=text)] for text in text_generations] ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: from threading import Thread import torch from transformers import ( StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) pipeline_kwargs = kwargs.get("pipeline_kwargs", {}) skip_prompt = kwargs.get("skip_prompt", True) if stop is not None: stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop) stopping_ids_list = stop or [] class StopOnTokens(StoppingCriteria): def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs: Any, ) -> bool: for stop_id in stopping_ids_list: if input_ids[0][-1] == stop_id: return True return False stopping_criteria = StoppingCriteriaList([StopOnTokens()]) inputs = self.pipeline.tokenizer(prompt, return_tensors="pt") streamer = TextIteratorStreamer( self.pipeline.tokenizer, timeout=60.0, skip_prompt=skip_prompt, skip_special_tokens=True, ) generation_kwargs = dict( inputs, streamer=streamer, stopping_criteria=stopping_criteria, **pipeline_kwargs, ) t1 = Thread(target=self.pipeline.model.generate, kwargs=generation_kwargs) t1.start() for char in streamer: chunk = GenerationChunk(text=char) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk