Source code for langchain_huggingface.embeddings.huggingface_endpoint
import json
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
[docs]class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
    """HuggingFaceHub embedding models.
    To use, you should have the ``huggingface_hub`` python package installed, and the
    environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
    it as a named parameter to the constructor.
    Example:
        .. code-block:: python
            from langchain_huggingface import HuggingFaceEndpointEmbeddings
            model = "sentence-transformers/all-mpnet-base-v2"
            hf = HuggingFaceEndpointEmbeddings(
                model=model,
                task="feature-extraction",
                huggingfacehub_api_token="my-api-key",
            )
    """
    client: Any  #: :meta private:
    async_client: Any  #: :meta private:
    model: Optional[str] = None
    """Model name to use."""
    repo_id: Optional[str] = None
    """Huggingfacehub repository id, for backward compatibility."""
    task: Optional[str] = "feature-extraction"
    """Task to call the model with."""
    model_kwargs: Optional[dict] = None
    """Keyword arguments to pass to the model."""
    huggingfacehub_api_token: Optional[str] = None
    class Config:
        """Configuration for this pydantic object."""
        extra = Extra.forbid
    @root_validator(pre=False, skip_on_failure=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        values["huggingfacehub_api_token"] = get_from_dict_or_env(
            values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN", None
        )
        huggingfacehub_api_token = get_from_dict_or_env(
            values, "huggingfacehub_api_token", "HF_TOKEN", None
        )
        try:
            from huggingface_hub import (  # type: ignore[import]
                AsyncInferenceClient,
                InferenceClient,
            )
            if values["model"]:
                values["repo_id"] = values["model"]
            elif values["repo_id"]:
                values["model"] = values["repo_id"]
            else:
                values["model"] = DEFAULT_MODEL
                values["repo_id"] = DEFAULT_MODEL
            client = InferenceClient(
                model=values["model"],
                token=huggingfacehub_api_token,
            )
            async_client = AsyncInferenceClient(
                model=values["model"],
                token=huggingfacehub_api_token,
            )
            if values["task"] not in VALID_TASKS:
                raise ValueError(
                    f"Got invalid task {values['task']}, "
                    f"currently only {VALID_TASKS} are supported"
                )
            values["client"] = client
            values["async_client"] = async_client
        except ImportError:
            raise ImportError(
                "Could not import huggingface_hub python package. "
                "Please install it with `pip install huggingface_hub`."
            )
        return values
[docs]    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
        Args:
            texts: The list of texts to embed.
        Returns:
            List of embeddings, one for each text.
        """
        # replace newlines, which can negatively affect performance.
        texts = [text.replace("\n", " ") for text in texts]
        _model_kwargs = self.model_kwargs or {}
        #  api doc: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed
        responses = self.client.post(
            json={"inputs": texts, **_model_kwargs}, task=self.task
        )
        return json.loads(responses.decode()) 
[docs]    async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
        """Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
        Args:
            texts: The list of texts to embed.
        Returns:
            List of embeddings, one for each text.
        """
        # replace newlines, which can negatively affect performance.
        texts = [text.replace("\n", " ") for text in texts]
        _model_kwargs = self.model_kwargs or {}
        responses = await self.async_client.post(
            json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
        )
        return json.loads(responses.decode()) 
[docs]    def embed_query(self, text: str) -> List[float]:
        """Call out to HuggingFaceHub's embedding endpoint for embedding query text.
        Args:
            text: The text to embed.
        Returns:
            Embeddings for the text.
        """
        response = self.embed_documents([text])[0]
        return response 
[docs]    async def aembed_query(self, text: str) -> List[float]:
        """Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
        Args:
            text: The text to embed.
        Returns:
            Embeddings for the text.
        """
        response = (await self.aembed_documents([text]))[0]
        return response