"""Module contains a PDF parser based on Document AI from Google Cloud.
You need to install two libraries to use this parser:
pip install google-cloud-documentai
pip install google-cloud-documentai-toolbox
"""
import logging
import re
import time
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterator, List, Optional, Sequence
from langchain_core.document_loaders import BaseBlobParser
from langchain_core.document_loaders.blob_loaders import Blob
from langchain_core.documents import Document
from langchain_core.utils.iter import batch_iterate
from langchain_google_community._utils import get_client_info
if TYPE_CHECKING:
from google.api_core.operation import Operation # type: ignore[import]
from google.cloud.documentai import ( # type: ignore[import]
DocumentProcessorServiceClient,
)
logger = logging.getLogger(__name__)
[docs]@dataclass
class DocAIParsingResults:
"""A dataclass to store Document AI parsing results."""
source_path: str
parsed_path: str
[docs]class DocAIParser(BaseBlobParser):
"""`Google Cloud Document AI` parser.
For a detailed explanation of Document AI, refer to the product documentation.
https://cloud.google.com/document-ai/docs/overview
"""
[docs] def __init__(
self,
*,
client: Optional["DocumentProcessorServiceClient"] = None,
location: Optional[str] = None,
gcs_output_path: Optional[str] = None,
processor_name: Optional[str] = None,
):
"""Initializes the parser.
Args:
client: a DocumentProcessorServiceClient to use
location: a Google Cloud location where a Document AI processor is located
gcs_output_path: a path on Google Cloud Storage to store parsing results
processor_name: full resource name of a Document AI processor or processor
version
You should provide either a client or location (and then a client
would be instantiated).
"""
if bool(client) == bool(location):
raise ValueError(
"You must specify either a client or a location to instantiate "
"a client."
)
pattern = r"projects\/[0-9]+\/locations\/[a-z\-0-9]+\/processors\/[a-z0-9]+"
if processor_name and not re.fullmatch(pattern, processor_name):
raise ValueError(
f"Processor name {processor_name} has the wrong format. If your "
"prediction endpoint looks like https://us-documentai.googleapis.com"
"/v1/projects/PROJECT_ID/locations/us/processors/PROCESSOR_ID:process,"
" use only projects/PROJECT_ID/locations/us/processors/PROCESSOR_ID "
"part."
)
self._gcs_output_path = gcs_output_path
self._processor_name = processor_name
if client:
self._client = client
else:
try:
from google.api_core.client_options import ClientOptions
from google.cloud.documentai import DocumentProcessorServiceClient
except ImportError as exc:
raise ImportError(
"Could not import google-cloud-documentai python package. "
"Please, install docai dependency group: "
"`pip install langchain-google-community[docai]`"
) from exc
options = ClientOptions(
api_endpoint=f"{location}-documentai.googleapis.com"
)
self._client = DocumentProcessorServiceClient(
client_options=options,
client_info=get_client_info(module="document-ai"),
)
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Parses a blob lazily.
Args:
blobs: a Blob to parse
This is a long-running operation. A recommended way is to batch
documents together and use the `batch_parse()` method.
"""
yield from self.batch_parse([blob], gcs_output_path=self._gcs_output_path)
[docs] def online_process(
self,
blob: Blob,
enable_native_pdf_parsing: bool = True,
field_mask: Optional[str] = None,
page_range: Optional[List[int]] = None,
) -> Iterator[Document]:
"""Parses a blob lazily using online processing.
Args:
blob: a blob to parse.
enable_native_pdf_parsing: enable pdf embedded text extraction
field_mask: a comma-separated list of which fields to include in the
Document AI response.
suggested: "text,pages.pageNumber,pages.layout"
page_range: list of page numbers to parse. If `None`,
entire document will be parsed.
"""
try:
from google.cloud import documentai
from google.cloud.documentai_v1.types import ( # type: ignore[import, attr-defined]
IndividualPageSelector,
OcrConfig,
ProcessOptions,
)
except ImportError as exc:
raise ImportError(
"Could not import google-cloud-documentai python package. "
"Please, install docai dependency group: "
"`pip install langchain-google-community[docai]`"
) from exc
try:
from google.cloud.documentai_toolbox.wrappers.page import ( # type: ignore[import]
_text_from_layout,
)
except ImportError as exc:
raise ImportError(
"documentai_toolbox package not found, please install it with "
"`pip install langchain-google-community[docai]`"
) from exc
ocr_config = (
OcrConfig(enable_native_pdf_parsing=enable_native_pdf_parsing)
if enable_native_pdf_parsing
else None
)
individual_page_selector = (
IndividualPageSelector(pages=page_range) if page_range else None
)
response = self._client.process_document(
documentai.ProcessRequest(
name=self._processor_name,
gcs_document=documentai.GcsDocument(
gcs_uri=blob.path,
mime_type=blob.mimetype or "application/pdf",
),
process_options=ProcessOptions(
ocr_config=ocr_config,
individual_page_selector=individual_page_selector,
),
skip_human_review=True,
field_mask=field_mask,
)
)
yield from (
Document(
page_content=_text_from_layout(page.layout, response.document.text),
metadata={
"page": page.page_number,
"source": blob.path,
},
)
for page in response.document.pages
)
[docs] def batch_parse(
self,
blobs: Sequence[Blob],
gcs_output_path: Optional[str] = None,
timeout_sec: int = 3600,
check_in_interval_sec: int = 60,
) -> Iterator[Document]:
"""Parses a list of blobs lazily.
Args:
blobs: a list of blobs to parse.
gcs_output_path: a path on Google Cloud Storage to store parsing results.
timeout_sec: a timeout to wait for Document AI to complete, in seconds.
check_in_interval_sec: an interval to wait until next check
whether parsing operations have been completed, in seconds
This is a long-running operation. A recommended way is to decouple
parsing from creating LangChain Documents:
>>> operations = parser.docai_parse(blobs, gcs_path)
>>> parser.is_running(operations)
You can get operations names and save them:
>>> names = [op.operation.name for op in operations]
And when all operations are finished, you can use their results:
>>> operations = parser.operations_from_names(operation_names)
>>> results = parser.get_results(operations)
>>> docs = parser.parse_from_results(results)
"""
output_path = gcs_output_path or self._gcs_output_path
if not output_path:
raise ValueError(
"An output path on Google Cloud Storage should be provided."
)
operations = self.docai_parse(blobs, gcs_output_path=output_path)
operation_names = [op.operation.name for op in operations]
logger.debug(
"Started parsing with Document AI, submitted operations %s", operation_names
)
time_elapsed = 0
while self.is_running(operations):
time.sleep(check_in_interval_sec)
time_elapsed += check_in_interval_sec
if time_elapsed > timeout_sec:
raise TimeoutError(
"Timeout exceeded! Check operations " f"{operation_names} later!"
)
logger.debug(".")
results = self.get_results(operations=operations)
yield from self.parse_from_results(results)
[docs] def parse_from_results(
self, results: List[DocAIParsingResults]
) -> Iterator[Document]:
try:
from google.cloud.documentai_toolbox.utilities.gcs_utilities import ( # type: ignore[import]
split_gcs_uri,
)
from google.cloud.documentai_toolbox.wrappers.document import ( # type: ignore[import]
_get_shards,
)
from google.cloud.documentai_toolbox.wrappers.page import _text_from_layout
except ImportError as exc:
raise ImportError(
"documentai_toolbox package not found, please install it with "
"`pip install langchain-google-community[docai]`"
) from exc
for result in results:
gcs_bucket_name, gcs_prefix = split_gcs_uri(result.parsed_path)
shards = _get_shards(gcs_bucket_name, gcs_prefix)
yield from (
Document(
page_content=_text_from_layout(page.layout, shard.text),
metadata={"page": page.page_number, "source": result.source_path},
)
for shard in shards
for page in shard.pages
)
[docs] def operations_from_names(self, operation_names: List[str]) -> List["Operation"]:
"""Initializes Long-Running Operations from their names."""
try:
from google.longrunning.operations_pb2 import ( # type: ignore[import]
GetOperationRequest,
)
except ImportError as exc:
raise ImportError(
"long running operations package not found, please install it with"
"`pip install langchain-google-community[docai]`"
) from exc
return [
self._client.get_operation(request=GetOperationRequest(name=name))
for name in operation_names
]
[docs] def is_running(self, operations: List["Operation"]) -> bool:
return any(not op.done() for op in operations)
[docs] def docai_parse(
self,
blobs: Sequence[Blob],
*,
gcs_output_path: Optional[str] = None,
processor_name: Optional[str] = None,
batch_size: int = 1000,
enable_native_pdf_parsing: bool = True,
field_mask: Optional[str] = None,
) -> List["Operation"]:
"""Runs Google Document AI PDF Batch Processing on a list of blobs.
Args:
blobs: a list of blobs to be parsed
gcs_output_path: a path (folder) on GCS to store results
processor_name: name of a Document AI processor.
batch_size: amount of documents per batch
enable_native_pdf_parsing: a config option for the parser
field_mask: a comma-separated list of which fields to include in the
Document AI response.
suggested: "text,pages.pageNumber,pages.layout"
Document AI has a 1000 file limit per batch, so batches larger than that need
to be split into multiple requests.
Batch processing is an async long-running operation
and results are stored in a output GCS bucket.
"""
try:
from google.cloud import documentai
from google.cloud.documentai_v1.types import OcrConfig, ProcessOptions
except ImportError as exc:
raise ImportError(
"documentai package not found, please install it with "
"`pip install langchain-google-community[docai]`"
) from exc
output_path = gcs_output_path or self._gcs_output_path
if output_path is None:
raise ValueError(
"An output path on Google Cloud Storage should be provided."
)
processor_name = processor_name or self._processor_name
if processor_name is None:
raise ValueError("A Document AI processor name should be provided.")
operations = []
for batch in batch_iterate(size=batch_size, iterable=blobs):
input_config = documentai.BatchDocumentsInputConfig(
gcs_documents=documentai.GcsDocuments(
documents=[
documentai.GcsDocument(
gcs_uri=blob.path,
mime_type=blob.mimetype or "application/pdf",
)
for blob in batch
]
)
)
output_config = documentai.DocumentOutputConfig(
gcs_output_config=documentai.DocumentOutputConfig.GcsOutputConfig(
gcs_uri=output_path, field_mask=field_mask
)
)
process_options = (
ProcessOptions(
ocr_config=OcrConfig(
enable_native_pdf_parsing=enable_native_pdf_parsing
)
)
if enable_native_pdf_parsing
else None
)
operations.append(
self._client.batch_process_documents(
documentai.BatchProcessRequest(
name=processor_name,
input_documents=input_config,
document_output_config=output_config,
process_options=process_options,
skip_human_review=True,
)
)
)
return operations
[docs] def get_results(self, operations: List["Operation"]) -> List[DocAIParsingResults]:
try:
from google.cloud.documentai_v1 import ( # type: ignore[import]
BatchProcessMetadata,
)
except ImportError as exc:
raise ImportError(
"documentai package not found, please install it with "
"`pip install langchain-google-community[docai]`"
) from exc
return [
DocAIParsingResults(
source_path=status.input_gcs_source,
parsed_path=status.output_gcs_destination,
)
for op in operations
for status in (
op.metadata.individual_process_statuses
if isinstance(op.metadata, BatchProcessMetadata)
else BatchProcessMetadata.deserialize(
op.metadata.value
).individual_process_statuses
)
]