Source code for langchain_core.prompts.string

"""BasePrompt schema definition."""

from __future__ import annotations

import warnings
from abc import ABC
from string import Formatter
from typing import Any, Callable, Dict, List, Set, Tuple, Type

import langchain_core.utils.mustache as mustache
from langchain_core.prompt_values import PromptValue, StringPromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.pydantic_v1 import BaseModel, create_model
from langchain_core.utils import get_colored_text
from langchain_core.utils.formatting import formatter
from langchain_core.utils.interactive_env import is_interactive_env


[docs]def jinja2_formatter(template: str, **kwargs: Any) -> str: """Format a template using jinja2. *Security warning*: As of LangChain 0.0.329, this method uses Jinja2's SandboxedEnvironment by default. However, this sand-boxing should be treated as a best-effort approach rather than a guarantee of security. Do not accept jinja2 templates from untrusted sources as they may lead to arbitrary Python code execution. https://jinja.palletsprojects.com/en/3.1.x/sandbox/ Args: template: The template string. **kwargs: The variables to format the template with. Returns: The formatted string. Raises: ImportError: If jinja2 is not installed. """ try: from jinja2.sandbox import SandboxedEnvironment except ImportError: raise ImportError( "jinja2 not installed, which is needed to use the jinja2_formatter. " "Please install it with `pip install jinja2`." "Please be cautious when using jinja2 templates. " "Do not expand jinja2 templates using unverified or user-controlled " "inputs as that can result in arbitrary Python code execution." ) # This uses a sandboxed environment to prevent arbitrary code execution. # Jinja2 uses an opt-out rather than opt-in approach for sand-boxing. # Please treat this sand-boxing as a best-effort approach rather than # a guarantee of security. # We recommend to never use jinja2 templates with untrusted inputs. # https://jinja.palletsprojects.com/en/3.1.x/sandbox/ # approach not a guarantee of security. return SandboxedEnvironment().from_string(template).render(**kwargs)
[docs]def validate_jinja2(template: str, input_variables: List[str]) -> None: """ Validate that the input variables are valid for the template. Issues a warning if missing or extra variables are found. Args: template: The template string. input_variables: The input variables. """ input_variables_set = set(input_variables) valid_variables = _get_jinja2_variables_from_template(template) missing_variables = valid_variables - input_variables_set extra_variables = input_variables_set - valid_variables warning_message = "" if missing_variables: warning_message += f"Missing variables: {missing_variables} " if extra_variables: warning_message += f"Extra variables: {extra_variables}" if warning_message: warnings.warn(warning_message.strip())
def _get_jinja2_variables_from_template(template: str) -> Set[str]: try: from jinja2 import Environment, meta except ImportError: raise ImportError( "jinja2 not installed, which is needed to use the jinja2_formatter. " "Please install it with `pip install jinja2`." ) env = Environment() ast = env.parse(template) variables = meta.find_undeclared_variables(ast) return variables
[docs]def mustache_formatter(template: str, **kwargs: Any) -> str: """Format a template using mustache. Args: template: The template string. **kwargs: The variables to format the template with. Returns: The formatted string. """ return mustache.render(template, kwargs)
[docs]def mustache_template_vars( template: str, ) -> Set[str]: """Get the variables from a mustache template. Args: template: The template string. Returns: The variables from the template. """ vars: Set[str] = set() section_depth = 0 for type, key in mustache.tokenize(template): if type == "end": section_depth -= 1 elif ( type in ("variable", "section", "inverted section", "no escape") and key != "." and section_depth == 0 ): vars.add(key.split(".")[0]) if type in ("section", "inverted section"): section_depth += 1 return vars
Defs = Dict[str, "Defs"]
[docs]def mustache_schema( template: str, ) -> Type[BaseModel]: """Get the variables from a mustache template. Args: template: The template string. Returns: The variables from the template as a Pydantic model. """ fields = {} prefix: Tuple[str, ...] = () section_stack: List[Tuple[str, ...]] = [] for type, key in mustache.tokenize(template): if key == ".": continue if type == "end": if section_stack: prefix = section_stack.pop() elif type in ("section", "inverted section"): section_stack.append(prefix) prefix = prefix + tuple(key.split(".")) fields[prefix] = False elif type in ("variable", "no escape"): fields[prefix + tuple(key.split("."))] = True defs: Defs = {} # None means leaf node while fields: field, is_leaf = fields.popitem() current = defs for part in field[:-1]: current = current.setdefault(part, {}) current.setdefault(field[-1], "" if is_leaf else {}) # type: ignore[arg-type] return _create_model_recursive("PromptInput", defs)
def _create_model_recursive(name: str, defs: Defs) -> Type: return create_model( # type: ignore[call-overload] name, **{ k: (_create_model_recursive(k, v), None) if v else (type(v), None) for k, v in defs.items() }, ) DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = { "f-string": formatter.format, "mustache": mustache_formatter, "jinja2": jinja2_formatter, } DEFAULT_VALIDATOR_MAPPING: Dict[str, Callable] = { "f-string": formatter.validate_input_variables, "jinja2": validate_jinja2, }
[docs]def check_valid_template( template: str, template_format: str, input_variables: List[str] ) -> None: """Check that template string is valid. Args: template: The template string. template_format: The template format. Should be one of "f-string" or "jinja2". input_variables: The input variables. Raises: ValueError: If the template format is not supported. ValueError: If the prompt schema is invalid. """ try: validator_func = DEFAULT_VALIDATOR_MAPPING[template_format] except KeyError as exc: raise ValueError( f"Invalid template format {template_format!r}, should be one of" f" {list(DEFAULT_FORMATTER_MAPPING)}." ) from exc try: validator_func(template, input_variables) except (KeyError, IndexError) as exc: raise ValueError( "Invalid prompt schema; check for mismatched or missing input parameters" f" from {input_variables}." ) from exc
[docs]def get_template_variables(template: str, template_format: str) -> List[str]: """Get the variables from the template. Args: template: The template string. template_format: The template format. Should be one of "f-string" or "jinja2". Returns: The variables from the template. Raises: ValueError: If the template format is not supported. """ if template_format == "jinja2": # Get the variables for the template input_variables = _get_jinja2_variables_from_template(template) elif template_format == "f-string": input_variables = { v for _, v, _, _ in Formatter().parse(template) if v is not None } elif template_format == "mustache": input_variables = mustache_template_vars(template) else: raise ValueError(f"Unsupported template format: {template_format}") return sorted(input_variables)
[docs]class StringPromptTemplate(BasePromptTemplate, ABC): """String prompt that exposes the format method, returning a prompt.""" @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "base"]
[docs] def format_prompt(self, **kwargs: Any) -> PromptValue: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return StringPromptValue(text=self.format(**kwargs))
[docs] async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return StringPromptValue(text=await self.aformat(**kwargs))
[docs] def pretty_repr(self, html: bool = False) -> str: """Get a pretty representation of the prompt. Args: html: Whether to return an HTML-formatted string. Returns: A pretty representation of the prompt. """ # TODO: handle partials dummy_vars = { input_var: "{" + f"{input_var}" + "}" for input_var in self.input_variables } if html: dummy_vars = { k: get_colored_text(v, "yellow") for k, v in dummy_vars.items() } return self.format(**dummy_vars)
[docs] def pretty_print(self) -> None: """Print a pretty representation of the prompt.""" print(self.pretty_repr(html=is_interactive_env())) # noqa: T201