Source code for langchain_core.document_loaders.base

"""Abstract interface for document loader implementations."""

from __future__ import annotations

from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, AsyncIterator, Iterator, List, Optional

from langchain_core.documents import Document
from langchain_core.runnables import run_in_executor

if TYPE_CHECKING:
    from langchain_text_splitters import TextSplitter

from langchain_core.documents.base import Blob


[docs]class BaseLoader(ABC): """Interface for Document Loader. Implementations should implement the lazy-loading method using generators to avoid loading all Documents into memory at once. `load` is provided just for user convenience and should not be overridden. """ # Sub-classes should not implement this method directly. Instead, they # should implement the lazy load method.
[docs] def load(self) -> List[Document]: """Load data into Document objects.""" return list(self.lazy_load())
[docs] async def aload(self) -> List[Document]: """Load data into Document objects.""" return [document async for document in self.alazy_load()]
[docs] def load_and_split( self, text_splitter: Optional[TextSplitter] = None ) -> List[Document]: """Load Documents and split into chunks. Chunks are returned as Documents. Do not override this method. It should be considered to be deprecated! Args: text_splitter: TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns: List of Documents. """ if text_splitter is None: try: from langchain_text_splitters import RecursiveCharacterTextSplitter except ImportError as e: raise ImportError( "Unable to import from langchain_text_splitters. Please specify " "text_splitter or install langchain_text_splitters with " "`pip install -U langchain-text-splitters`." ) from e _text_splitter: TextSplitter = RecursiveCharacterTextSplitter() else: _text_splitter = text_splitter docs = self.load() return _text_splitter.split_documents(docs)
# Attention: This method will be upgraded into an abstractmethod once it's # implemented in all the existing subclasses.
[docs] def lazy_load(self) -> Iterator[Document]: """A lazy loader for Documents.""" if type(self).load != BaseLoader.load: return iter(self.load()) raise NotImplementedError( f"{self.__class__.__name__} does not implement lazy_load()" )
[docs] async def alazy_load(self) -> AsyncIterator[Document]: """A lazy loader for Documents.""" iterator = await run_in_executor(None, self.lazy_load) done = object() while True: doc = await run_in_executor(None, next, iterator, done) # type: ignore[call-arg, arg-type] if doc is done: break yield doc # type: ignore[misc]
[docs]class BaseBlobParser(ABC): """Abstract interface for blob parsers. A blob parser provides a way to parse raw data stored in a blob into one or more documents. The parser can be composed with blob loaders, making it easy to reuse a parser independent of how the blob was originally loaded. """
[docs] @abstractmethod def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazy parsing interface. Subclasses are required to implement this method. Args: blob: Blob instance Returns: Generator of documents """
[docs] def parse(self, blob: Blob) -> List[Document]: """Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Args: blob: Blob instance Returns: List of documents """ return list(self.lazy_parse(blob))