import uuid
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
DEFAULT_DISTANCE_STRATEGY = "cosine" # or "l2", "inner_product"
DEFAULT_TiDB_VECTOR_TABLE_NAME = "langchain_vector"
[docs]class TiDBVectorStore(VectorStore):
"""TiDB Vector Store."""
[docs] def __init__(
self,
connection_string: str,
embedding_function: Embeddings,
table_name: str = DEFAULT_TiDB_VECTOR_TABLE_NAME,
distance_strategy: str = DEFAULT_DISTANCE_STRATEGY,
*,
engine_args: Optional[Dict[str, Any]] = None,
drop_existing_table: bool = False,
**kwargs: Any,
) -> None:
"""
Initialize a TiDB Vector Store in Langchain with a flexible
and standardized table structure for storing vector data
which remains fixed regardless of the dynamic table name setting.
The vector table schema includes:
- 'id': a UUID for each entry.
- 'embedding': stores vector data in a VectorType column.
- 'document': a Text column for the original data or additional information.
- 'meta': a JSON column for flexible metadata storage.
- 'create_time' and 'update_time': timestamp columns for tracking data changes.
This table structure caters to general use cases and
complex scenarios where the table serves as a semantic layer for advanced
data integration and analysis, leveraging SQL for join queries.
Args:
connection_string (str): The connection string for the TiDB database,
format: "mysql+pymysql://root@34.212.137.91:4000/test".
embedding_function: The embedding function used to generate embeddings.
table_name (str, optional): The name of the table that will be used to
store vector data. If you do not provide a table name,
a default table named `langchain_vector` will be created automatically.
distance_strategy: The strategy used for similarity search,
defaults to "cosine", valid values: "l2", "cosine", "inner_product".
engine_args (Optional[Dict]): Additional arguments for the database engine,
defaults to None.
drop_existing_table: Drop the existing TiDB table before initializing,
defaults to False.
**kwargs (Any): Additional keyword arguments.
Examples:
.. code-block:: python
from langchain_community.vectorstores import TiDBVectorStore
from langchain_openai import OpenAIEmbeddings
embeddingFunc = OpenAIEmbeddings()
CONNECTION_STRING = "mysql+pymysql://root@34.212.137.91:4000/test"
vs = TiDBVector.from_texts(
embedding=embeddingFunc,
texts = [..., ...],
connection_string=CONNECTION_STRING,
distance_strategy="l2",
table_name="tidb_vector_langchain",
)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search_with_score(query)
"""
super().__init__(**kwargs)
self._connection_string = connection_string
self._embedding_function = embedding_function
self._distance_strategy = distance_strategy
self._vector_dimension = self._get_dimension()
try:
from tidb_vector.integrations import TiDBVectorClient
except ImportError:
raise ImportError(
"Could not import tidbvec python package. "
"Please install it with `pip install tidb-vector`."
)
self._tidb = TiDBVectorClient(
connection_string=connection_string,
table_name=table_name,
distance_strategy=distance_strategy,
vector_dimension=self._vector_dimension,
engine_args=engine_args,
drop_existing_table=drop_existing_table,
**kwargs,
)
@property
def embeddings(self) -> Embeddings:
"""Return the function used to generate embeddings."""
return self._embedding_function
@property
def tidb_vector_client(self) -> Any:
"""Return the TiDB Vector Client."""
return self._tidb
@property
def distance_strategy(self) -> Any:
"""
Returns the current distance strategy.
"""
return self._distance_strategy
def _get_dimension(self) -> int:
"""
Get the dimension of the vector using embedding functions.
"""
return len(self._embedding_function.embed_query("test embedding length"))
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "TiDBVectorStore":
"""
Create a VectorStore from a list of texts.
Args:
texts (List[str]): The list of texts to be added to the TiDB Vector.
embedding (Embeddings): The function to use for generating embeddings.
metadatas: The list of metadata dictionaries corresponding to each text,
defaults to None.
**kwargs (Any): Additional keyword arguments.
connection_string (str): The connection string for the TiDB database,
format: "mysql+pymysql://root@34.212.137.91:4000/test".
table_name (str, optional): The name of table used to store vector data,
defaults to "langchain_vector".
distance_strategy: The distance strategy used for similarity search,
defaults to "cosine", allowed: "l2", "cosine", "inner_product".
ids (Optional[List[str]]): The list of IDs corresponding to each text,
defaults to None.
engine_args: Additional arguments for the underlying database engine,
defaults to None.
drop_existing_table: Drop the existing TiDB table before initializing,
defaults to False.
Returns:
VectorStore: The created TiDB Vector Store.
"""
# Extract arguments from kwargs with default values
connection_string = kwargs.pop("connection_string", None)
if connection_string is None:
raise ValueError("please provide your tidb connection_url")
table_name = kwargs.pop("table_name", "langchain_vector")
distance_strategy = kwargs.pop("distance_strategy", "cosine")
ids = kwargs.pop("ids", None)
engine_args = kwargs.pop("engine_args", None)
drop_existing_table = kwargs.pop("drop_existing_table", False)
embeddings = embedding.embed_documents(list(texts))
vs = cls(
connection_string=connection_string,
table_name=table_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
engine_args=engine_args,
drop_existing_table=drop_existing_table,
**kwargs,
)
vs._tidb.insert(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
return vs
[docs] @classmethod
def from_existing_vector_table(
cls,
embedding: Embeddings,
connection_string: str,
table_name: str,
distance_strategy: str = DEFAULT_DISTANCE_STRATEGY,
*,
engine_args: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> VectorStore:
"""
Create a VectorStore instance from an existing TiDB Vector Store in TiDB.
Args:
embedding (Embeddings): The function to use for generating embeddings.
connection_string (str): The connection string for the TiDB database,
format: "mysql+pymysql://root@34.212.137.91:4000/test".
table_name (str, optional): The name of table used to store vector data,
defaults to "langchain_vector".
distance_strategy: The distance strategy used for similarity search,
defaults to "cosine", allowed: "l2", "cosine", 'inner_product'.
engine_args: Additional arguments for the underlying database engine,
defaults to None.
**kwargs (Any): Additional keyword arguments.
Returns:
VectorStore: The VectorStore instance.
Raises:
NoSuchTableError: If the specified table does not exist in the TiDB.
"""
try:
from tidb_vector.integrations import check_table_existence
except ImportError:
raise ImportError(
"Could not import tidbvec python package. "
"Please install it with `pip install tidb-vector`."
)
if check_table_existence(connection_string, table_name):
return cls(
connection_string=connection_string,
table_name=table_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
engine_args=engine_args,
**kwargs,
)
else:
raise ValueError(f"Table {table_name} does not exist in the TiDB database.")
[docs] def drop_vectorstore(self) -> None:
"""
Drop the Vector Store from the TiDB database.
"""
self._tidb.drop_table()
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""
Add texts to TiDB Vector Store.
Args:
texts (Iterable[str]): The texts to be added.
metadatas (Optional[List[dict]]): The metadata associated with each text,
Defaults to None.
ids (Optional[List[str]]): The IDs to be assigned to each text,
Defaults to None, will be generated if not provided.
Returns:
List[str]: The IDs assigned to the added texts.
"""
embeddings = self._embedding_function.embed_documents(list(texts))
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
if not metadatas:
metadatas = [{} for _ in texts]
return self._tidb.insert(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
[docs] def delete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""
Delete vector data from the TiDB Vector Store.
Args:
ids (Optional[List[str]]): A list of vector IDs to delete.
kwargs: Additional keyword arguments.
"""
self._tidb.delete(ids=ids, **kwargs)
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""
Perform a similarity search using the given query.
Args:
query (str): The query string.
k (int, optional): The number of results to retrieve. Defaults to 4.
filter (dict, optional): A filter to apply to the search results.
Defaults to None.
kwargs: Additional keyword arguments.
Returns:
List[Document]: A list of Document objects representing the search results.
"""
result = self.similarity_search_with_score(query, k, filter, **kwargs)
return [doc for doc, _ in result]
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 5,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""
Perform a similarity search with score based on the given query.
Args:
query (str): The query string.
k (int, optional): The number of results to return. Defaults to 5.
filter (dict, optional): A filter to apply to the search results.
Defaults to None.
kwargs: Additional keyword arguments.
Returns:
A list of tuples containing relevant documents and their similarity scores.
"""
query_vector = self._embedding_function.embed_query(query)
relevant_docs = self._tidb.query(
query_vector=query_vector, k=k, filter=filter, **kwargs
)
return [
(
Document(
page_content=doc.document,
metadata=doc.metadata,
),
doc.distance,
)
for doc in relevant_docs
]
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
Select the relevance score function based on the distance strategy.
"""
if self._distance_strategy == "cosine":
return self._cosine_relevance_score_fn
elif self._distance_strategy == "l2":
return self._euclidean_relevance_score_fn
else:
raise ValueError(
"No supported normalization function"
f" for distance_strategy of {self._distance_strategy}."
"Consider providing relevance_score_fn to PGVector constructor."
)