Source code for langchain_community.vectorstores.surrealdb

import asyncio
from typing import (
    Any,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
)

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

from langchain_community.vectorstores.utils import maximal_marginal_relevance

DEFAULT_K = 4  # Number of Documents to return.


[docs]class SurrealDBStore(VectorStore): """ SurrealDB as Vector Store. To use, you should have the ``surrealdb`` python package installed. Args: embedding_function: Embedding function to use. dburl: SurrealDB connection url ns: surrealdb namespace for the vector store. (default: "langchain") db: surrealdb database for the vector store. (default: "database") collection: surrealdb collection for the vector store. (default: "documents") (optional) db_user and db_pass: surrealdb credentials Example: .. code-block:: python from langchain_community.vectorstores.surrealdb import SurrealDBStore from langchain_community.embeddings import HuggingFaceEmbeddings embedding_function = HuggingFaceEmbeddings() dburl = "ws://localhost:8000/rpc" ns = "langchain" db = "docstore" collection = "documents" db_user = "root" db_pass = "root" sdb = SurrealDBStore.from_texts( texts=texts, embedding=embedding_function, dburl, ns, db, collection, db_user=db_user, db_pass=db_pass) """
[docs] def __init__( self, embedding_function: Embeddings, **kwargs: Any, ) -> None: try: from surrealdb import Surreal except ImportError as e: raise ImportError( """Cannot import from surrealdb. please install with `pip install surrealdb`.""" ) from e self.dburl = kwargs.pop("dburl", "ws://localhost:8000/rpc") if self.dburl[0:2] == "ws": self.sdb = Surreal(self.dburl) else: raise ValueError("Only websocket connections are supported at this time.") self.ns = kwargs.pop("ns", "langchain") self.db = kwargs.pop("db", "database") self.collection = kwargs.pop("collection", "documents") self.embedding_function = embedding_function self.kwargs = kwargs
[docs] async def initialize(self) -> None: """ Initialize connection to surrealdb database and authenticate if credentials are provided """ await self.sdb.connect() if "db_user" in self.kwargs and "db_pass" in self.kwargs: user = self.kwargs.get("db_user") password = self.kwargs.get("db_pass") await self.sdb.signin({"user": user, "pass": password}) await self.sdb.use(self.ns, self.db)
@property def embeddings(self) -> Optional[Embeddings]: return ( self.embedding_function if isinstance(self.embedding_function, Embeddings) else None )
[docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Add list of text along with embeddings to the vector store asynchronously Args: texts (Iterable[str]): collection of text to add to the database Returns: List of ids for the newly inserted documents """ embeddings = self.embedding_function.embed_documents(list(texts)) ids = [] for idx, text in enumerate(texts): data = {"text": text, "embedding": embeddings[idx]} if metadatas is not None and idx < len(metadatas): data["metadata"] = metadatas[idx] # type: ignore[assignment] else: data["metadata"] = [] record = await self.sdb.create( self.collection, data, ) ids.append(record[0]["id"]) return ids
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Add list of text along with embeddings to the vector store Args: texts (Iterable[str]): collection of text to add to the database Returns: List of ids for the newly inserted documents """ async def _add_texts( texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: await self.initialize() return await self.aadd_texts(texts, metadatas, **kwargs) return asyncio.run(_add_texts(texts, metadatas, **kwargs))
[docs] async def adelete( self, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Optional[bool]: """Delete by document ID asynchronously. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise. """ if ids is None: await self.sdb.delete(self.collection) return True else: if isinstance(ids, str): await self.sdb.delete(ids) return True else: if isinstance(ids, list) and len(ids) > 0: _ = [await self.sdb.delete(id) for id in ids] return True return False
[docs] def delete( self, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Optional[bool]: """Delete by document ID. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise. """ async def _delete(ids: Optional[List[str]], **kwargs: Any) -> Optional[bool]: await self.initialize() return await self.adelete(ids=ids, **kwargs) return asyncio.run(_delete(ids, **kwargs))
async def _asimilarity_search_by_vector_with_score( self, embedding: List[float], k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float, Any]]: """Run similarity search for query embedding asynchronously and return documents and scores Args: embedding (List[float]): Query embedding. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar along with scores """ args = { "collection": self.collection, "embedding": embedding, "k": k, "score_threshold": kwargs.get("score_threshold", 0), } # build additional filter criteria custom_filter = "" if filter: for key in filter: # check value type if type(filter[key]) in [str, bool]: filter_value = f"'{filter[key]}'" else: filter_value = f"{filter[key]}" custom_filter += f"and metadata.{key} = {filter_value} " query = f""" select id, text, metadata, embedding, vector::similarity::cosine(embedding, $embedding) as similarity from ⟨{args["collection"]} where vector::similarity::cosine(embedding, $embedding) >= $score_threshold {custom_filter} order by similarity desc LIMIT $k; """ results = await self.sdb.query(query, args) if len(results) == 0: return [] result = results[0] if result["status"] != "OK": from surrealdb.ws import SurrealException err = result.get("result", "Unknown Error") raise SurrealException(err) return [ ( Document( page_content=doc["text"], metadata={"id": doc["id"], **(doc.get("metadata") or {})}, ), doc["similarity"], doc["embedding"], ) for doc in result["result"] ]
[docs] async def asimilarity_search_with_relevance_scores( self, query: str, k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search asynchronously and return relevance scores Args: query (str): Query k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar along with relevance scores """ query_embedding = self.embedding_function.embed_query(query) return [ (document, similarity) for document, similarity, _ in ( await self._asimilarity_search_by_vector_with_score( query_embedding, k, filter=filter, **kwargs ) ) ]
[docs] def similarity_search_with_relevance_scores( self, query: str, k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search synchronously and return relevance scores Args: query (str): Query k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar along with relevance scores """ async def _similarity_search_with_relevance_scores() -> ( List[Tuple[Document, float]] ): await self.initialize() return await self.asimilarity_search_with_relevance_scores( query, k, filter=filter, **kwargs ) return asyncio.run(_similarity_search_with_relevance_scores())
[docs] async def asimilarity_search_with_score( self, query: str, k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search asynchronously and return distance scores Args: query (str): Query k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar along with relevance distance scores """ query_embedding = self.embedding_function.embed_query(query) return [ (document, similarity) for document, similarity, _ in ( await self._asimilarity_search_by_vector_with_score( query_embedding, k, filter=filter, **kwargs ) ) ]
[docs] def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search synchronously and return distance scores Args: query (str): Query k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar along with relevance distance scores """ async def _similarity_search_with_score() -> List[Tuple[Document, float]]: await self.initialize() return await self.asimilarity_search_with_score( query, k, filter=filter, **kwargs ) return asyncio.run(_similarity_search_with_score())
[docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search on query embedding asynchronously Args: embedding (List[float]): Query embedding k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query """ return [ document for document, _, _ in await self._asimilarity_search_by_vector_with_score( embedding, k, filter=filter, **kwargs ) ]
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search on query embedding Args: embedding (List[float]): Query embedding k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query """ async def _similarity_search_by_vector() -> List[Document]: await self.initialize() return await self.asimilarity_search_by_vector( embedding, k, filter=filter, **kwargs ) return asyncio.run(_similarity_search_by_vector())
[docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ result = await self._asimilarity_search_by_vector_with_score( embedding, fetch_k, filter=filter, **kwargs ) # extract only document from result docs = [sub[0] for sub in result] # extract only embedding from result embeddings = [sub[-1] for sub in result] mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), embeddings, k=k, lambda_mult=lambda_mult, ) return [docs[i] for i in mmr_selected]
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, *, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ async def _max_marginal_relevance_search_by_vector() -> List[Document]: await self.initialize() return await self.amax_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult, filter=filter, **kwargs ) return asyncio.run(_max_marginal_relevance_search_by_vector())
[docs] @classmethod async def afrom_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> "SurrealDBStore": """Create SurrealDBStore from list of text asynchronously Args: texts (List[str]): list of text to vectorize and store embedding (Optional[Embeddings]): Embedding function. dburl (str): SurrealDB connection url (default: "ws://localhost:8000/rpc") ns (str): surrealdb namespace for the vector store. (default: "langchain") db (str): surrealdb database for the vector store. (default: "database") collection (str): surrealdb collection for the vector store. (default: "documents") (optional) db_user and db_pass: surrealdb credentials Returns: SurrealDBStore object initialized and ready for use.""" sdb = cls(embedding, **kwargs) await sdb.initialize() await sdb.aadd_texts(texts, metadatas, **kwargs) return sdb
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> "SurrealDBStore": """Create SurrealDBStore from list of text Args: texts (List[str]): list of text to vectorize and store embedding (Optional[Embeddings]): Embedding function. dburl (str): SurrealDB connection url ns (str): surrealdb namespace for the vector store. (default: "langchain") db (str): surrealdb database for the vector store. (default: "database") collection (str): surrealdb collection for the vector store. (default: "documents") (optional) db_user and db_pass: surrealdb credentials Returns: SurrealDBStore object initialized and ready for use.""" sdb = asyncio.run(cls.afrom_texts(texts, embedding, metadatas, **kwargs)) return sdb