Source code for langchain_community.utilities.pebblo

from __future__ import annotations

import logging
import os
import pathlib
import platform
from typing import List, Optional, Tuple

from langchain_core.documents import Document
from langchain_core.env import get_runtime_environment
from langchain_core.pydantic_v1 import BaseModel

from langchain_community.document_loaders.base import BaseLoader

logger = logging.getLogger(__name__)

PLUGIN_VERSION = "0.1.1"
CLASSIFIER_URL = os.getenv("PEBBLO_CLASSIFIER_URL", "http://localhost:8000")
PEBBLO_CLOUD_URL = os.getenv("PEBBLO_CLOUD_URL", "https://api.daxa.ai")

LOADER_DOC_URL = "/v1/loader/doc"
APP_DISCOVER_URL = "/v1/app/discover"
BATCH_SIZE_BYTES = 100 * 1024  # 100 KB

# Supported loaders for Pebblo safe data loading
file_loader = [
    "JSONLoader",
    "S3FileLoader",
    "UnstructuredMarkdownLoader",
    "UnstructuredPDFLoader",
    "UnstructuredFileLoader",
    "UnstructuredJsonLoader",
    "PyPDFLoader",
    "GCSFileLoader",
    "AmazonTextractPDFLoader",
    "CSVLoader",
    "UnstructuredExcelLoader",
    "UnstructuredEmailLoader",
]
dir_loader = [
    "DirectoryLoader",
    "S3DirLoader",
    "SlackDirectoryLoader",
    "PyPDFDirectoryLoader",
    "NotionDirectoryLoader",
]

in_memory = ["DataFrameLoader"]
cloud_folder = [
    "NotionDBLoader",
    "GoogleDriveLoader",
    "SharePointLoader",
]

LOADER_TYPE_MAPPING = {
    "file": file_loader,
    "dir": dir_loader,
    "in-memory": in_memory,
    "cloud-folder": cloud_folder,
}

SUPPORTED_LOADERS = (*file_loader, *dir_loader, *in_memory)

logger = logging.getLogger(__name__)


[docs]class IndexedDocument(Document): """Pebblo Indexed Document.""" pb_id: str """Unique ID of the document."""
[docs]class Runtime(BaseModel): """Pebblo Runtime.""" type: str = "local" """Runtime type. Defaults to 'local'.""" host: str """Host name of the runtime.""" path: str """Current working directory path.""" ip: Optional[str] = "" """IP address of the runtime. Defaults to ''.""" platform: str """Platform details of the runtime.""" os: str """OS name.""" os_version: str """OS version.""" language: str """Runtime kernel.""" language_version: str """Version of the runtime kernel.""" runtime: str = "local" """More runtime details. Defaults to 'local'."""
[docs]class Framework(BaseModel): """Pebblo Framework instance.""" name: str """Name of the Framework.""" version: str """Version of the Framework."""
[docs]class App(BaseModel): """Pebblo AI application.""" name: str """Name of the app.""" owner: str """Owner of the app.""" description: Optional[str] """Description of the app.""" load_id: str """Unique load_id of the app instance.""" runtime: Runtime """Runtime details of the app.""" framework: Framework """Framework details of the app.""" plugin_version: str """Plugin version used for the app."""
[docs]class Doc(BaseModel): """Pebblo document.""" name: str """Name of app originating this document.""" owner: str """Owner of app.""" docs: list """List of documents with its metadata.""" plugin_version: str """Pebblo plugin Version""" load_id: str """Unique load_id of the app instance.""" loader_details: dict """Loader details with its metadata.""" loading_end: bool """Boolean, specifying end of loading of source.""" source_owner: str """Owner of the source of the loader.""" classifier_location: str """Location of the classifier."""
[docs]def get_full_path(path: str) -> str: """Return an absolute local path for a local file/directory, for a network related path, return as is. Args: path (str): Relative path to be resolved. Returns: str: Resolved absolute path. """ if ( not path or ("://" in path) or ("/" == path[0]) or (path in ["unknown", "-", "in-memory"]) ): return path full_path = pathlib.Path(path) if full_path.exists(): full_path = full_path.resolve() return str(full_path)
[docs]def get_loader_type(loader: str) -> str: """Return loader type among, file, dir or in-memory. Args: loader (str): Name of the loader, whose type is to be resolved. Returns: str: One of the loader type among, file/dir/in-memory. """ for loader_type, loaders in LOADER_TYPE_MAPPING.items(): if loader in loaders: return loader_type return "unsupported"
[docs]def get_loader_full_path(loader: BaseLoader) -> str: """Return an absolute source path of source of loader based on the keys present in Document. Args: loader (BaseLoader): Langchain document loader, derived from Baseloader. """ from langchain_community.document_loaders import ( DataFrameLoader, GCSFileLoader, NotionDBLoader, S3FileLoader, ) location = "-" if not isinstance(loader, BaseLoader): logger.error( "loader is not derived from BaseLoader, source location will be unknown!" ) return location loader_dict = loader.__dict__ try: if "bucket" in loader_dict: if isinstance(loader, GCSFileLoader): location = f"gc://{loader.bucket}/{loader.blob}" elif isinstance(loader, S3FileLoader): location = f"s3://{loader.bucket}/{loader.key}" elif "source" in loader_dict: location = loader_dict["source"] if location and "channel" in loader_dict: channel = loader_dict["channel"] if channel: location = f"{location}/{channel}" elif "path" in loader_dict: location = loader_dict["path"] elif "file_path" in loader_dict: location = loader_dict["file_path"] elif "web_paths" in loader_dict: web_paths = loader_dict["web_paths"] if web_paths and isinstance(web_paths, list) and len(web_paths) > 0: location = web_paths[0] # For in-memory types: elif isinstance(loader, DataFrameLoader): location = "in-memory" elif isinstance(loader, NotionDBLoader): location = f"notiondb://{loader.database_id}" elif loader.__class__.__name__ == "GoogleDriveLoader": if loader_dict.get("folder_id"): folder_id = loader_dict.get("folder_id") location = f"https://drive.google.com/drive/u/2/folders/{folder_id}" elif loader_dict.get("file_ids"): file_ids = loader_dict.get("file_ids", []) location = ", ".join( [ f"https://drive.google.com/file/d/{file_id}/view" for file_id in file_ids ] ) elif loader_dict.get("document_ids"): document_ids = loader_dict.get("document_ids", []) location = ", ".join( [ f"https://docs.google.com/document/d/{doc_id}/edit" for doc_id in document_ids ] ) except Exception: pass return get_full_path(str(location))
[docs]def get_runtime() -> Tuple[Framework, Runtime]: """Fetch the current Framework and Runtime details. Returns: Tuple[Framework, Runtime]: Framework and Runtime for the current app instance. """ runtime_env = get_runtime_environment() framework = Framework( name="langchain", version=runtime_env.get("library_version", None) ) uname = platform.uname() runtime = Runtime( host=uname.node, path=os.environ["PWD"], platform=runtime_env.get("platform", "unknown"), os=uname.system, os_version=uname.version, ip=get_ip(), language=runtime_env.get("runtime", "unknown"), language_version=runtime_env.get("runtime_version", "unknown"), ) if "Darwin" in runtime.os: runtime.type = "desktop" runtime.runtime = "Mac OSX" logger.debug(f"framework {framework}") logger.debug(f"runtime {runtime}") return framework, runtime
[docs]def get_ip() -> str: """Fetch local runtime ip address. Returns: str: IP address """ import socket # lazy imports host = socket.gethostname() try: public_ip = socket.gethostbyname(host) except Exception: public_ip = socket.gethostbyname("localhost") return public_ip
[docs]def generate_size_based_batches( docs: List[Document], max_batch_size: int = 100 * 1024 ) -> List[List[Document]]: """ Generate batches of documents based on page_content size. Args: docs: List of documents to be batched. max_batch_size: Maximum size of each batch in bytes. Defaults to 100*1024(100KB) Returns: List[List[Document]]: List of batches of documents """ batches: List[List[Document]] = [] current_batch: List[Document] = [] current_batch_size: int = 0 for doc in docs: # Calculate the size of the document in bytes doc_size: int = len(doc.page_content.encode("utf-8")) if doc_size > max_batch_size: # If a single document exceeds the max batch size, send it as a single batch batches.append([doc]) else: if current_batch_size + doc_size > max_batch_size: # If adding this document exceeds the max batch size, start a new batch batches.append(current_batch) current_batch = [] current_batch_size = 0 # Add document to the current batch current_batch.append(doc) current_batch_size += doc_size # Add the last batch if it has documents if current_batch: batches.append(current_batch) return batches