from __future__ import annotations
import logging
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.pydantic_v1 import Field, SecretStr
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
logger = logging.getLogger(__name__)
[docs]class QianfanLLMEndpoint(LLM):
"""Baidu Qianfan completion model integration.
Setup:
Install ``qianfan`` and set environment variables ``QIANFAN_AK``, ``QIANFAN_SK``.
.. code-block:: bash
pip install qianfan
export QIANFAN_AK="your-api-key"
export QIANFAN_SK="your-secret_key"
Key init args — completion params:
model: str
Name of Qianfan model to use.
temperature: Optional[float]
Sampling temperature.
endpoint: Optional[str]
Endpoint of the Qianfan LLM
top_p: Optional[float]
What probability mass to use.
Key init args — client params:
timeout: Optional[int]
Timeout for requests.
api_key: Optional[str]
Qianfan API KEY. If not passed in will be read from env var QIANFAN_AK.
secret_key: Optional[str]
Qianfan SECRET KEY. If not passed in will be read from env var QIANFAN_SK.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.llms import QianfanLLMEndpoint
llm = QianfanLLMEndpoint(
model="ERNIE-3.5-8K",
# api_key="...",
# secret_key="...",
# other params...
)
Invoke:
.. code-block:: python
messages = [
("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"),
("human", "我喜欢编程。"),
]
llm.invoke(messages)
.. code-block:: python
'I like programming.'
Stream:
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
I like
programming.
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block::
'I like programming.'
Async:
.. code-block:: python
await llm.ainvoke(messages)
# stream:
# async for chunk in llm.astream(messages):
# print(chunk)
# batch:
# await llm.abatch([messages])
.. code-block:: python
'I like programming.'
""" # noqa: E501
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""init kwargs for qianfan client init, such as `query_per_second` which is
associated with qianfan resource object to limit QPS"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""extra params for model invoke using with `do`."""
client: Any
qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key")
qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key")
streaming: Optional[bool] = False
"""Whether to stream the results or not."""
model: Optional[str] = Field(default=None)
"""Model name.
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
preset models are mapping to an endpoint.
`model` will be ignored if `endpoint` is set
Default is set by `qianfan` SDK, not here
"""
endpoint: Optional[str] = None
"""Endpoint of the Qianfan LLM, required if custom model used."""
request_timeout: Optional[int] = Field(default=60, alias="timeout")
"""request timeout for chat http requests"""
top_p: Optional[float] = 0.8
temperature: Optional[float] = 0.95
penalty_score: Optional[float] = 1
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
In the case of other model, passing these params will not affect the result.
"""
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
values["qianfan_ak"] = convert_to_secret_str(
get_from_dict_or_env(
values,
["qianfan_ak", "api_key"],
"QIANFAN_AK",
default="",
)
)
values["qianfan_sk"] = convert_to_secret_str(
get_from_dict_or_env(
values,
["qianfan_sk", "secret_key"],
"QIANFAN_SK",
default="",
)
)
params = {
**values.get("init_kwargs", {}),
"model": values["model"],
}
if values["qianfan_ak"].get_secret_value() != "":
params["ak"] = values["qianfan_ak"].get_secret_value()
if values["qianfan_sk"].get_secret_value() != "":
params["sk"] = values["qianfan_sk"].get_secret_value()
if values["endpoint"] is not None and values["endpoint"] != "":
params["endpoint"] = values["endpoint"]
try:
import qianfan
values["client"] = qianfan.Completion(**params)
except ImportError:
raise ImportError(
"qianfan package not found, please install it with "
"`pip install qianfan`"
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
return {
**{"endpoint": self.endpoint, "model": self.model},
**super()._identifying_params,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "baidu-qianfan-endpoint"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Qianfan API."""
normal_params = {
"model": self.model,
"endpoint": self.endpoint,
"stream": self.streaming,
"request_timeout": self.request_timeout,
"top_p": self.top_p,
"temperature": self.temperature,
"penalty_score": self.penalty_score,
}
return {**normal_params, **self.model_kwargs}
def _convert_prompt_msg_params(
self,
prompt: str,
**kwargs: Any,
) -> dict:
if "streaming" in kwargs:
kwargs["stream"] = kwargs.pop("streaming")
return {
**{"prompt": prompt, "model": self.model},
**self._default_params,
**kwargs,
}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to an qianfan models endpoint for each generation with a prompt.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = qianfan_model.invoke("Tell me a joke.")
"""
if self.streaming:
completion = ""
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
params["stop"] = stop
response_payload = self.client.do(**params)
return response_payload["result"]
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if self.streaming:
completion = ""
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
params["stop"] = stop
response_payload = await self.client.ado(**params)
return response_payload["result"]
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
params["stop"] = stop
for res in self.client.do(**params):
if res:
chunk = GenerationChunk(text=res["result"])
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
params["stop"] = stop
async for res in await self.client.ado(**params):
if res:
chunk = GenerationChunk(text=res["result"])
if run_manager:
await run_manager.on_llm_new_token(chunk.text)
yield chunk