Source code for langchain_community.llms.azureml_endpoint

import json
import urllib.request
import warnings
from abc import abstractmethod
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional

from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator, validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env

DEFAULT_TIMEOUT = 50


[docs]class AzureMLEndpointClient(object): """AzureML Managed Endpoint client."""
[docs] def __init__( self, endpoint_url: str, endpoint_api_key: str, deployment_name: str = "", timeout: int = DEFAULT_TIMEOUT, ) -> None: """Initialize the class.""" if not endpoint_api_key or not endpoint_url: raise ValueError( """A key/token and REST endpoint should be provided to invoke the endpoint""" ) self.endpoint_url = endpoint_url self.endpoint_api_key = endpoint_api_key self.deployment_name = deployment_name self.timeout = timeout
[docs] def call( self, body: bytes, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> bytes: """call.""" # The azureml-model-deployment header will force the request to go to a # specific deployment. Remove this header to have the request observe the # endpoint traffic rules. headers = { "Content-Type": "application/json", "Authorization": ("Bearer " + self.endpoint_api_key), } if self.deployment_name != "": headers["azureml-model-deployment"] = self.deployment_name req = urllib.request.Request(self.endpoint_url, body, headers) response = urllib.request.urlopen( req, timeout=kwargs.get("timeout", self.timeout) ) result = response.read() return result
[docs]class AzureMLEndpointApiType(str, Enum): """Azure ML endpoints API types. Use `dedicated` for models deployed in hosted infrastructure (also known as Online Endpoints in Azure Machine Learning), or `serverless` for models deployed as a service with a pay-as-you-go billing or PTU. """ dedicated = "dedicated" realtime = "realtime" #: Deprecated serverless = "serverless"
[docs]class ContentFormatterBase: """Transform request and response of AzureML endpoint to match with required schema. """ """ Example: .. code-block:: python class ContentFormatter(ContentFormatterBase): content_type = "application/json" accepts = "application/json" def format_request_payload( self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType, ) -> bytes: input_str = json.dumps( { "inputs": {"input_string": [prompt]}, "parameters": model_kwargs, } ) return str.encode(input_str) def format_response_payload( self, output: str, api_type: AzureMLEndpointApiType ) -> str: response_json = json.loads(output) return response_json[0]["0"] """ content_type: Optional[str] = "application/json" """The MIME type of the input data passed to the endpoint""" accepts: Optional[str] = "application/json" """The MIME type of the response data returned from the endpoint""" format_error_msg: str = ( "Error while formatting response payload for chat model of type " " `{api_type}`. Are you using the right formatter for the deployed " " model and endpoint type?" )
[docs] @staticmethod def escape_special_characters(prompt: str) -> str: """Escapes any special characters in `prompt`""" escape_map = { "\\": "\\\\", '"': '\\"', "\b": "\\b", "\f": "\\f", "\n": "\\n", "\r": "\\r", "\t": "\\t", } # Replace each occurrence of the specified characters with escaped versions for escape_sequence, escaped_sequence in escape_map.items(): prompt = prompt.replace(escape_sequence, escaped_sequence) return prompt
@property def supported_api_types(self) -> List[AzureMLEndpointApiType]: """Supported APIs for the given formatter. Azure ML supports deploying models using different hosting methods. Each method may have a different API structure.""" return [AzureMLEndpointApiType.dedicated]
[docs] def format_request_payload( self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated, ) -> Any: """Formats the request body according to the input schema of the model. Returns bytes or seekable file like object in the format specified in the content_type request header. """ raise NotImplementedError()
[docs] @abstractmethod def format_response_payload( self, output: bytes, api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated, ) -> Generation: """Formats the response body according to the output schema of the model. Returns the data type that is received from the response. """
[docs]class GPT2ContentFormatter(ContentFormatterBase): """Content handler for GPT2""" @property def supported_api_types(self) -> List[AzureMLEndpointApiType]: return [AzureMLEndpointApiType.dedicated]
[docs] def format_request_payload( # type: ignore[override] self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType ) -> bytes: prompt = ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( {"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs} ) return str.encode(request_payload)
[docs] def format_response_payload( # type: ignore[override] self, output: bytes, api_type: AzureMLEndpointApiType ) -> Generation: try: choice = json.loads(output)[0]["0"] except (KeyError, IndexError, TypeError) as e: raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr] return Generation(text=choice)
[docs]class OSSContentFormatter(GPT2ContentFormatter): """Deprecated: Kept for backwards compatibility Content handler for LLMs from the OSS catalog.""" content_formatter: Any = None
[docs] def __init__(self) -> None: super().__init__() warnings.warn( """`OSSContentFormatter` will be deprecated in the future. Please use `GPT2ContentFormatter` instead. """ )
[docs]class HFContentFormatter(ContentFormatterBase): """Content handler for LLMs from the HuggingFace catalog.""" @property def supported_api_types(self) -> List[AzureMLEndpointApiType]: return [AzureMLEndpointApiType.dedicated]
[docs] def format_request_payload( # type: ignore[override] self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType ) -> bytes: ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( {"inputs": [f'"{prompt}"'], "parameters": model_kwargs} ) return str.encode(request_payload)
[docs] def format_response_payload( # type: ignore[override] self, output: bytes, api_type: AzureMLEndpointApiType ) -> Generation: try: choice = json.loads(output)[0]["0"]["generated_text"] except (KeyError, IndexError, TypeError) as e: raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr] return Generation(text=choice)
[docs]class DollyContentFormatter(ContentFormatterBase): """Content handler for the Dolly-v2-12b model""" @property def supported_api_types(self) -> List[AzureMLEndpointApiType]: return [AzureMLEndpointApiType.dedicated]
[docs] def format_request_payload( # type: ignore[override] self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType ) -> bytes: prompt = ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( { "input_data": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs, } ) return str.encode(request_payload)
[docs] def format_response_payload( # type: ignore[override] self, output: bytes, api_type: AzureMLEndpointApiType ) -> Generation: try: choice = json.loads(output)[0] except (KeyError, IndexError, TypeError) as e: raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr] return Generation(text=choice)
[docs]class CustomOpenAIContentFormatter(ContentFormatterBase): """Content formatter for models that use the OpenAI like API scheme.""" @property def supported_api_types(self) -> List[AzureMLEndpointApiType]: return [AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.serverless]
[docs] def format_request_payload( # type: ignore[override] self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType ) -> bytes: """Formats the request according to the chosen api""" prompt = ContentFormatterBase.escape_special_characters(prompt) if api_type in [ AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.realtime, ]: request_payload = json.dumps( { "input_data": { "input_string": [f'"{prompt}"'], "parameters": model_kwargs, } } ) elif api_type == AzureMLEndpointApiType.serverless: request_payload = json.dumps({"prompt": prompt, **model_kwargs}) else: raise ValueError( f"`api_type` {api_type} is not supported by this formatter" ) return str.encode(request_payload)
[docs] def format_response_payload( # type: ignore[override] self, output: bytes, api_type: AzureMLEndpointApiType ) -> Generation: """Formats response""" if api_type in [ AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.realtime, ]: try: choice = json.loads(output)[0]["0"] except (KeyError, IndexError, TypeError) as e: raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr] return Generation(text=choice) if api_type == AzureMLEndpointApiType.serverless: try: choice = json.loads(output)["choices"][0] if not isinstance(choice, dict): raise TypeError( "Endpoint response is not well formed for a chat " "model. Expected `dict` but `{type(choice)}` was " "received." ) except (KeyError, IndexError, TypeError) as e: raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr] return Generation( text=choice["text"].strip(), generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
[docs]class LlamaContentFormatter(CustomOpenAIContentFormatter): """Deprecated: Kept for backwards compatibility Content formatter for Llama.""" content_formatter: Any = None
[docs] def __init__(self) -> None: super().__init__() warnings.warn( """`LlamaContentFormatter` will be deprecated in the future. Please use `CustomOpenAIContentFormatter` instead. """ )
[docs]class AzureMLBaseEndpoint(BaseModel): """Azure ML Online Endpoint models.""" endpoint_url: str = "" """URL of pre-existing Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_URL`.""" endpoint_api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated """Type of the endpoint being consumed. Possible values are `serverless` for pay-as-you-go and `dedicated` for dedicated endpoints. """ endpoint_api_key: SecretStr = convert_to_secret_str("") """Authentication Key for Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_API_KEY`.""" deployment_name: str = "" """Deployment Name for Endpoint. NOT REQUIRED to call endpoint. Should be passed to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`.""" timeout: int = DEFAULT_TIMEOUT """Request timeout for calls to the endpoint""" http_client: Any = None #: :meta private: max_retries: int = 1 content_formatter: Any = None """The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" @root_validator(pre=True) def validate_environ(cls, values: Dict) -> Dict: values["endpoint_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY") ) values["endpoint_url"] = get_from_dict_or_env( values, "endpoint_url", "AZUREML_ENDPOINT_URL" ) values["deployment_name"] = get_from_dict_or_env( values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", "" ) values["endpoint_api_type"] = get_from_dict_or_env( values, "endpoint_api_type", "AZUREML_ENDPOINT_API_TYPE", AzureMLEndpointApiType.dedicated, ) values["timeout"] = get_from_dict_or_env( values, "timeout", "AZUREML_TIMEOUT", str(DEFAULT_TIMEOUT), ) return values @validator("content_formatter") def validate_content_formatter( cls, field_value: Any, values: Dict ) -> ContentFormatterBase: """Validate that content formatter is supported by endpoint type.""" endpoint_api_type = values.get("endpoint_api_type") if endpoint_api_type not in field_value.supported_api_types: raise ValueError( f"Content formatter f{type(field_value)} is not supported by this " f"endpoint. Supported types are {field_value.supported_api_types} " f"but endpoint is {endpoint_api_type}." ) return field_value @validator("endpoint_url") def validate_endpoint_url(cls, field_value: Any) -> str: """Validate that endpoint url is complete.""" if field_value.endswith("/"): field_value = field_value[:-1] if field_value.endswith("inference.ml.azure.com"): raise ValueError( "`endpoint_url` should contain the full invocation URL including " "`/score` for `endpoint_api_type='dedicated'` or `/v1/completions` " "or `/v1/chat/completions` for `endpoint_api_type='serverless'`" ) return field_value @validator("endpoint_api_type") def validate_endpoint_api_type( cls, field_value: Any, values: Dict ) -> AzureMLEndpointApiType: """Validate that endpoint api type is compatible with the URL format.""" endpoint_url = values.get("endpoint_url") if ( ( field_value == AzureMLEndpointApiType.dedicated or field_value == AzureMLEndpointApiType.realtime ) and not endpoint_url.endswith("/score") # type: ignore[union-attr] ): raise ValueError( "Endpoints of type `dedicated` should follow the format " "`https://<your-endpoint>.<your_region>.inference.ml.azure.com/score`." " If your endpoint URL ends with `/v1/completions` or" "`/v1/chat/completions`, use `endpoint_api_type='serverless'` instead." ) if field_value == AzureMLEndpointApiType.serverless and not ( endpoint_url.endswith("/v1/completions") # type: ignore[union-attr] or endpoint_url.endswith("/v1/chat/completions") # type: ignore[union-attr] ): raise ValueError( "Endpoints of type `serverless` should follow the format " "`https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`" " or `https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`" ) return field_value @validator("http_client", always=True) def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient: """Validate that api key and python package exists in environment.""" endpoint_url = values.get("endpoint_url") endpoint_key = values.get("endpoint_api_key") deployment_name = values.get("deployment_name") timeout = values.get("timeout", DEFAULT_TIMEOUT) http_client = AzureMLEndpointClient( endpoint_url, # type: ignore endpoint_key.get_secret_value(), # type: ignore deployment_name, # type: ignore timeout, # type: ignore ) return http_client
[docs]class AzureMLOnlineEndpoint(BaseLLM, AzureMLBaseEndpoint): """Azure ML Online Endpoint models. Example: .. code-block:: python azure_llm = AzureMLOnlineEndpoint( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_type=AzureMLApiType.dedicated, endpoint_api_key="my-api-key", timeout=120, content_formatter=content_formatter, ) """ @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"deployment_name": self.deployment_name}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "azureml_endpoint" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Run the LLM on the given prompts. Args: prompts: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model.invoke("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} _model_kwargs.update(kwargs) if stop: _model_kwargs["stop"] = stop generations = [] for prompt in prompts: request_payload = self.content_formatter.format_request_payload( prompt, _model_kwargs, self.endpoint_api_type ) response_payload = self.http_client.call( body=request_payload, run_manager=run_manager ) generated_text = self.content_formatter.format_response_payload( response_payload, self.endpoint_api_type ) generations.append([generated_text]) return LLMResult(generations=generations)