Source code for langchain_community.document_loaders.pebblo

"""Pebblo's safe dataloader is a wrapper for document loaders"""

import json
import logging
import os
import uuid
from http import HTTPStatus
from typing import Any, Dict, Iterator, List, Optional

import requests  # type: ignore
from langchain_core.documents import Document

from langchain_community.document_loaders.base import BaseLoader
from langchain_community.utilities.pebblo import (
    APP_DISCOVER_URL,
    BATCH_SIZE_BYTES,
    CLASSIFIER_URL,
    LOADER_DOC_URL,
    PEBBLO_CLOUD_URL,
    PLUGIN_VERSION,
    App,
    Doc,
    IndexedDocument,
    generate_size_based_batches,
    get_full_path,
    get_loader_full_path,
    get_loader_type,
    get_runtime,
)

logger = logging.getLogger(__name__)


[docs]class PebbloSafeLoader(BaseLoader): """Pebblo Safe Loader class is a wrapper around document loaders enabling the data to be scrutinized. """ _discover_sent: bool = False _loader_sent: bool = False
[docs] def __init__( self, langchain_loader: BaseLoader, name: str, owner: str = "", description: str = "", api_key: Optional[str] = None, load_semantic: bool = False, classifier_url: Optional[str] = None, *, classifier_location: str = "local", ): if not name or not isinstance(name, str): raise NameError("Must specify a valid name.") self.app_name = name self.api_key = os.environ.get("PEBBLO_API_KEY") or api_key self.load_id = str(uuid.uuid4()) self.loader = langchain_loader self.load_semantic = os.environ.get("PEBBLO_LOAD_SEMANTIC") or load_semantic self.owner = owner self.description = description self.source_path = get_loader_full_path(self.loader) self.source_owner = PebbloSafeLoader.get_file_owner_from_path(self.source_path) self.docs: List[Document] = [] self.docs_with_id: List[IndexedDocument] = [] loader_name = str(type(self.loader)).split(".")[-1].split("'")[0] self.source_type = get_loader_type(loader_name) self.source_path_size = self.get_source_size(self.source_path) self.source_aggregate_size = 0 self.classifier_url = classifier_url or CLASSIFIER_URL self.classifier_location = classifier_location self.batch_size = BATCH_SIZE_BYTES self.loader_details = { "loader": loader_name, "source_path": self.source_path, "source_type": self.source_type, **( {"source_path_size": str(self.source_path_size)} if self.source_path_size > 0 else {} ), } # generate app self.app = self._get_app_details() self._send_discover()
[docs] def load(self) -> List[Document]: """Load Documents. Returns: list: Documents fetched from load method of the wrapped `loader`. """ self.docs = self.loader.load() # Classify docs in batches self.classify_in_batches() return self.docs
[docs] def classify_in_batches(self) -> None: """ Classify documents in batches. This is to avoid API timeouts when sending large number of documents. Batches are generated based on the page_content size. """ batches: List[List[Document]] = generate_size_based_batches( self.docs, self.batch_size ) processed_docs: List[Document] = [] total_batches = len(batches) for i, batch in enumerate(batches): is_last_batch: bool = i == total_batches - 1 self.docs = batch self.docs_with_id = self._index_docs() classified_docs = self._classify_doc(loading_end=is_last_batch) self._add_pebblo_specific_metadata(classified_docs) if self.load_semantic: batch_processed_docs = self._add_semantic_to_docs(classified_docs) else: batch_processed_docs = self._unindex_docs() processed_docs.extend(batch_processed_docs) self.docs = processed_docs
[docs] def lazy_load(self) -> Iterator[Document]: """Load documents in lazy fashion. Raises: NotImplementedError: raised when lazy_load id not implemented within wrapped loader. Yields: list: Documents from loader's lazy loading. """ try: doc_iterator = self.loader.lazy_load() except NotImplementedError as exc: err_str = f"{self.loader.__class__.__name__} does not implement lazy_load()" logger.error(err_str) raise NotImplementedError(err_str) from exc while True: try: doc = next(doc_iterator) except StopIteration: self.docs = [] break self.docs = list((doc,)) self.docs_with_id = self._index_docs() classified_doc = self._classify_doc() self._add_pebblo_specific_metadata(classified_doc) if self.load_semantic: self.docs = self._add_semantic_to_docs(classified_doc) else: self.docs = self._unindex_docs() yield self.docs[0]
[docs] @classmethod def set_discover_sent(cls) -> None: cls._discover_sent = True
[docs] @classmethod def set_loader_sent(cls) -> None: cls._loader_sent = True
def _classify_doc(self, loading_end: bool = False) -> dict: """Send documents fetched from loader to pebblo-server. Then send classified documents to Daxa cloud(If api_key is present). Internal method. Args: loading_end (bool, optional): Flag indicating the halt of data loading by loader. Defaults to False. """ headers = { "Accept": "application/json", "Content-Type": "application/json", } if loading_end is True: PebbloSafeLoader.set_loader_sent() doc_content = [doc.dict() for doc in self.docs_with_id] docs = [] for doc in doc_content: doc_metadata = doc.get("metadata", {}) doc_authorized_identities = doc_metadata.get("authorized_identities", []) doc_source_path = get_full_path( doc_metadata.get( "full_path", doc_metadata.get("source", self.source_path) ) ) doc_source_owner = doc_metadata.get( "owner", PebbloSafeLoader.get_file_owner_from_path(doc_source_path) ) doc_source_size = doc_metadata.get( "size", self.get_source_size(doc_source_path) ) page_content = str(doc.get("page_content")) page_content_size = self.calculate_content_size(page_content) self.source_aggregate_size += page_content_size doc_id = doc.get("pb_id", None) or 0 docs.append( { "doc": page_content, "source_path": doc_source_path, "pb_id": doc_id, "last_modified": doc.get("metadata", {}).get("last_modified"), "file_owner": doc_source_owner, **( {"authorized_identities": doc_authorized_identities} if doc_authorized_identities else {} ), **( {"source_path_size": doc_source_size} if doc_source_size is not None else {} ), } ) payload: Dict[str, Any] = { "name": self.app_name, "owner": self.owner, "docs": docs, "plugin_version": PLUGIN_VERSION, "load_id": self.load_id, "loader_details": self.loader_details, "loading_end": "false", "source_owner": self.source_owner, "classifier_location": self.classifier_location, } if loading_end is True: payload["loading_end"] = "true" if "loader_details" in payload: payload["loader_details"]["source_aggregate_size"] = ( self.source_aggregate_size ) payload = Doc(**payload).dict(exclude_unset=True) classified_docs = {} # Raw payload to be sent to classifier if self.classifier_location == "local": load_doc_url = f"{self.classifier_url}{LOADER_DOC_URL}" try: pebblo_resp = requests.post( load_doc_url, headers=headers, json=payload, timeout=300 ) # Updating the structure of pebblo response docs for efficient searching for classified_doc in json.loads(pebblo_resp.text).get("docs", []): classified_docs.update({classified_doc["pb_id"]: classified_doc}) if pebblo_resp.status_code not in [ HTTPStatus.OK, HTTPStatus.BAD_GATEWAY, ]: logger.warning( "Received unexpected HTTP response code: %s", pebblo_resp.status_code, ) logger.debug( "send_loader_doc[local]: request url %s, body %s len %s\ response status %s body %s", pebblo_resp.request.url, str(pebblo_resp.request.body), str( len( pebblo_resp.request.body if pebblo_resp.request.body else [] ) ), str(pebblo_resp.status_code), pebblo_resp.json(), ) except requests.exceptions.RequestException: logger.warning("Unable to reach pebblo server.") except Exception as e: logger.warning("An Exception caught in _send_loader_doc: local %s", e) if self.api_key: if self.classifier_location == "local": docs = payload["docs"] for doc_data in docs: classified_data = classified_docs.get(doc_data["pb_id"], {}) doc_data.update( { "pb_checksum": classified_data.get("pb_checksum", None), "loader_source_path": classified_data.get( "loader_source_path", None ), "entities": classified_data.get("entities", {}), "topics": classified_data.get("topics", {}), } ) doc_data.pop("doc") headers.update({"x-api-key": self.api_key}) pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{LOADER_DOC_URL}" try: pebblo_cloud_response = requests.post( pebblo_cloud_url, headers=headers, json=payload, timeout=20 ) logger.debug( "send_loader_doc[cloud]: request url %s, body %s len %s\ response status %s body %s", pebblo_cloud_response.request.url, str(pebblo_cloud_response.request.body), str( len( pebblo_cloud_response.request.body if pebblo_cloud_response.request.body else [] ) ), str(pebblo_cloud_response.status_code), pebblo_cloud_response.json(), ) except requests.exceptions.RequestException: logger.warning("Unable to reach Pebblo cloud server.") except Exception as e: logger.warning("An Exception caught in _send_loader_doc: cloud %s", e) elif self.classifier_location == "pebblo-cloud": logger.warning("API key is missing for sending docs to Pebblo cloud.") raise NameError("API key is missing for sending docs to Pebblo cloud.") return classified_docs
[docs] @staticmethod def calculate_content_size(page_content: str) -> int: """Calculate the content size in bytes: - Encode the string to bytes using a specific encoding (e.g., UTF-8) - Get the length of the encoded bytes. Args: page_content (str): Data string. Returns: int: Size of string in bytes. """ # Encode the content to bytes using UTF-8 encoded_content = page_content.encode("utf-8") size = len(encoded_content) return size
def _send_discover(self) -> None: """Send app discovery payload to pebblo-server. Internal method.""" pebblo_resp = None headers = { "Accept": "application/json", "Content-Type": "application/json", } payload = self.app.dict(exclude_unset=True) # Raw discover payload to be sent to classifier if self.classifier_location == "local": app_discover_url = f"{self.classifier_url}{APP_DISCOVER_URL}" try: pebblo_resp = requests.post( app_discover_url, headers=headers, json=payload, timeout=20 ) logger.debug( "send_discover[local]: request url %s, body %s len %s\ response status %s body %s", pebblo_resp.request.url, str(pebblo_resp.request.body), str( len( pebblo_resp.request.body if pebblo_resp.request.body else [] ) ), str(pebblo_resp.status_code), pebblo_resp.json(), ) if pebblo_resp.status_code in [HTTPStatus.OK, HTTPStatus.BAD_GATEWAY]: PebbloSafeLoader.set_discover_sent() else: logger.warning( f"Received unexpected HTTP response code:\ {pebblo_resp.status_code}" ) except requests.exceptions.RequestException: logger.warning("Unable to reach pebblo server.") except Exception as e: logger.warning("An Exception caught in _send_discover: local %s", e) if self.api_key: try: headers.update({"x-api-key": self.api_key}) # If the pebblo_resp is None, # then the pebblo server version is not available if pebblo_resp: pebblo_server_version = json.loads(pebblo_resp.text).get( "pebblo_server_version" ) payload.update({"pebblo_server_version": pebblo_server_version}) payload.update({"pebblo_client_version": PLUGIN_VERSION}) pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{APP_DISCOVER_URL}" pebblo_cloud_response = requests.post( pebblo_cloud_url, headers=headers, json=payload, timeout=20 ) logger.debug( "send_discover[cloud]: request url %s, body %s len %s\ response status %s body %s", pebblo_cloud_response.request.url, str(pebblo_cloud_response.request.body), str( len( pebblo_cloud_response.request.body if pebblo_cloud_response.request.body else [] ) ), str(pebblo_cloud_response.status_code), pebblo_cloud_response.json(), ) except requests.exceptions.RequestException: logger.warning("Unable to reach Pebblo cloud server.") except Exception as e: logger.warning("An Exception caught in _send_discover: cloud %s", e) def _get_app_details(self) -> App: """Fetch app details. Internal method. Returns: App: App details. """ framework, runtime = get_runtime() app = App( name=self.app_name, owner=self.owner, description=self.description, load_id=self.load_id, runtime=runtime, framework=framework, plugin_version=PLUGIN_VERSION, ) return app
[docs] @staticmethod def get_file_owner_from_path(file_path: str) -> str: """Fetch owner of local file path. Args: file_path (str): Local file path. Returns: str: Name of owner. """ try: import pwd file_owner_uid = os.stat(file_path).st_uid file_owner_name = pwd.getpwuid(file_owner_uid).pw_name except Exception: file_owner_name = "unknown" return file_owner_name
[docs] def get_source_size(self, source_path: str) -> int: """Fetch size of source path. Source can be a directory or a file. Args: source_path (str): Local path of data source. Returns: int: Source size in bytes. """ if not source_path: return 0 size = 0 if os.path.isfile(source_path): size = os.path.getsize(source_path) elif os.path.isdir(source_path): total_size = 0 for dirpath, _, filenames in os.walk(source_path): for f in filenames: fp = os.path.join(dirpath, f) if not os.path.islink(fp): total_size += os.path.getsize(fp) size = total_size return size
def _index_docs(self) -> List[IndexedDocument]: """ Indexes the documents and returns a list of IndexedDocument objects. Returns: List[IndexedDocument]: A list of IndexedDocument objects with unique IDs. """ docs_with_id = [ IndexedDocument(pb_id=str(i), **doc.dict()) for i, doc in enumerate(self.docs) ] return docs_with_id def _add_semantic_to_docs(self, classified_docs: Dict) -> List[Document]: """ Adds semantic metadata to the given list of documents. Args: classified_docs (Dict): A dictionary of dictionaries containing the classified documents with pb_id as key. Returns: List[Document]: A list of Document objects with added semantic metadata. """ indexed_docs = { doc.pb_id: Document(page_content=doc.page_content, metadata=doc.metadata) for doc in self.docs_with_id } for classified_doc in classified_docs.values(): doc_id = classified_doc.get("pb_id") if doc_id in indexed_docs: self._add_semantic_to_doc(indexed_docs[doc_id], classified_doc) semantic_metadata_docs = [doc for doc in indexed_docs.values()] return semantic_metadata_docs def _unindex_docs(self) -> List[Document]: """ Converts a list of IndexedDocument objects to a list of Document objects. Returns: List[Document]: A list of Document objects. """ docs = [ Document(page_content=doc.page_content, metadata=doc.metadata) for i, doc in enumerate(self.docs_with_id) ] return docs def _add_semantic_to_doc(self, doc: Document, classified_doc: dict) -> Document: """ Adds semantic metadata to the given document in-place. Args: doc (Document): A Document object. classified_doc (dict): A dictionary containing the classified document. Returns: Document: The Document object with added semantic metadata. """ doc.metadata["pebblo_semantic_entities"] = list( classified_doc.get("entities", {}).keys() ) doc.metadata["pebblo_semantic_topics"] = list( classified_doc.get("topics", {}).keys() ) return doc def _add_pebblo_specific_metadata(self, classified_docs: dict) -> None: """Add Pebblo specific metadata to documents.""" for doc in self.docs_with_id: doc_metadata = doc.metadata doc_metadata["full_path"] = get_full_path( doc_metadata.get( "full_path", doc_metadata.get("source", self.source_path) ) ) doc_metadata["pb_checksum"] = classified_docs.get(doc.pb_id, {}).get( "pb_checksum", None )