"""ZhipuAI chat models wrapper."""
from __future__ import annotations
import json
import logging
import time
from collections.abc import AsyncIterator, Iterator
from contextlib import asynccontextmanager, contextmanager
from operator import itemgetter
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool
logger = logging.getLogger(__name__)
API_TOKEN_TTL_SECONDS = 3 * 60
ZHIPUAI_API_BASE = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
def _is_pydantic_class(obj: Any) -> bool:
return isinstance(obj, type) and issubclass(obj, BaseModel)
[docs]@contextmanager
def connect_sse(client: Any, method: str, url: str, **kwargs: Any) -> Iterator:
"""Context manager for connecting to an SSE stream.
Args:
client: The HTTP client.
method: The HTTP method.
url: The URL.
kwargs: Additional keyword arguments.
Yields:
The event source.
"""
from httpx_sse import EventSource
with client.stream(method, url, **kwargs) as response:
yield EventSource(response)
[docs]@asynccontextmanager
async def aconnect_sse(
client: Any, method: str, url: str, **kwargs: Any
) -> AsyncIterator:
"""Async context manager for connecting to an SSE stream.
Args:
client: The HTTP client.
method: The HTTP method.
url: The URL.
kwargs: Additional keyword arguments.
Yields:
The event source.
"""
from httpx_sse import EventSource
async with client.stream(method, url, **kwargs) as response:
yield EventSource(response)
def _get_jwt_token(api_key: str) -> str:
"""Gets JWT token for ZhipuAI API.
See 'https://open.bigmodel.cn/dev/api#nosdk'.
Args:
api_key: The API key for ZhipuAI API.
Returns:
The JWT token.
"""
import jwt
try:
id, secret = api_key.split(".")
except ValueError as err:
raise ValueError(f"Invalid API key: {api_key}") from err
payload = {
"api_key": id,
"exp": int(round(time.time() * 1000)) + API_TOKEN_TTL_SECONDS * 1000,
"timestamp": int(round(time.time() * 1000)),
}
return jwt.encode(
payload,
secret,
algorithm="HS256",
headers={"alg": "HS256", "sign_type": "SIGN"},
)
def _convert_dict_to_message(dct: Dict[str, Any]) -> BaseMessage:
role = dct.get("role")
content = dct.get("content", "")
if role == "system":
return SystemMessage(content=content)
if role == "user":
return HumanMessage(content=content)
if role == "assistant":
additional_kwargs = {}
tool_calls = dct.get("tool_calls", None)
if tool_calls is not None:
additional_kwargs["tool_calls"] = tool_calls
return AIMessage(content=content, additional_kwargs=additional_kwargs)
return ChatMessage(role=role, content=content) # type: ignore[arg-type]
def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
"""Convert a LangChain message to a dictionary.
Args:
message: The LangChain message.
Returns:
The dictionary.
"""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
else:
raise TypeError(f"Got unknown type '{message.__class__.__name__}'.")
return message_dict
def _convert_delta_to_message_chunk(
dct: Dict[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
role = dct.get("role")
content = dct.get("content", "")
additional_kwargs = {}
tool_calls = dct.get("tool_call", None)
if tool_calls is not None:
additional_kwargs["tool_calls"] = tool_calls
if role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
if role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
if role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
return default_class(content=content) # type: ignore[call-arg]
def _truncate_params(payload: Dict[str, Any]) -> None:
"""Truncate temperature and top_p parameters between [0.01, 0.99].
ZhipuAI only support temperature / top_p between (0, 1) open interval,
so we truncate them to [0.01, 0.99].
"""
temperature = payload.get("temperature")
top_p = payload.get("top_p")
if temperature is not None:
payload["temperature"] = max(0.01, min(0.99, temperature))
if top_p is not None:
payload["top_p"] = max(0.01, min(0.99, top_p))
[docs]class ChatZhipuAI(BaseChatModel):
"""ZhipuAI chat model integration.
Setup:
Install ``PyJWT`` and set environment variable ``ZHIPUAI_API_KEY``
.. code-block:: bash
pip install pyjwt
export ZHIPUAI_API_KEY="your-api-key"
Key init args — completion params:
model: Optional[str]
Name of ZhipuAI model to use.
temperature: float
Sampling temperature.
max_tokens: Optional[int]
Max number of tokens to generate.
Key init args — client params:
api_key: Optional[str]
ZhipuAI API key. If not passed in will be read from env var ZHIPUAI_API_KEY.
api_base: Optional[str]
Base URL for API requests.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.chat_models import ChatZhipuAI
zhipuai_chat = ChatZhipuAI(
temperature=0.5,
api_key="your-api-key",
model="glm-4",
# api_base="...",
# other params...
)
Invoke:
.. code-block:: python
messages = [
("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"),
("human", "我喜欢编程。"),
]
zhipuai_chat.invoke(messages)
.. code-block:: python
AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-c5d9af91-55c6-470e-9545-02b2fa0d7f9d-0')
Stream:
.. code-block:: python
for chunk in zhipuai_chat.stream(messages):
print(chunk)
.. code-block:: python
content='I' id='run-4df71729-618f-4e2b-a4ff-884682723082'
content=' enjoy' id='run-4df71729-618f-4e2b-a4ff-884682723082'
content=' programming' id='run-4df71729-618f-4e2b-a4ff-884682723082'
content='.' id='run-4df71729-618f-4e2b-a4ff-884682723082'
content='' response_metadata={'finish_reason': 'stop'} id='run-4df71729-618f-4e2b-a4ff-884682723082'
.. code-block:: python
stream = zhipuai_chat.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block::
AIMessageChunk(content='I enjoy programming.', response_metadata={'finish_reason': 'stop'}, id='run-20b05040-a0b4-4715-8fdc-b39dba9bfb53')
Async:
.. code-block:: python
await zhipuai_chat.ainvoke(messages)
# stream:
# async for chunk in zhipuai_chat.astream(messages):
# print(chunk)
# batch:
# await zhipuai_chat.abatch([messages])
.. code-block:: python
[AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-ba06af9d-4baa-40b2-9298-be9c62aa0849-0')]
Response metadata
.. code-block:: python
ai_msg = zhipuai_chat.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{'token_usage': {'completion_tokens': 6,
'prompt_tokens': 23,
'total_tokens': 29},
'model_name': 'glm-4',
'finish_reason': 'stop'}
""" # noqa: E501
@property
def lc_secrets(self) -> Dict[str, str]:
return {"zhipuai_api_key": "ZHIPUAI_API_KEY"}
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "zhipuai"]
@property
def lc_attributes(self) -> Dict[str, Any]:
attributes: Dict[str, Any] = {}
if self.zhipuai_api_base:
attributes["zhipuai_api_base"] = self.zhipuai_api_base
return attributes
@property
def _llm_type(self) -> str:
"""Return the type of chat model."""
return "zhipuai-chat"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
params = {
"model": self.model_name,
"stream": self.streaming,
"temperature": self.temperature,
}
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
return params
# client:
zhipuai_api_key: Optional[str] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `ZHIPUAI_API_KEY` if not provided."""
zhipuai_api_base: Optional[str] = Field(default=None, alias="api_base")
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator.
"""
model_name: Optional[str] = Field(default="glm-4", alias="model")
"""
Model name to use, see 'https://open.bigmodel.cn/dev/api#language'.
Alternatively, you can use any fine-tuned model from the GLM series.
"""
temperature: float = 0.95
"""
What sampling temperature to use. The value ranges from 0.0 to 1.0 and cannot
be equal to 0.
The larger the value, the more random and creative the output; The smaller
the value, the more stable or certain the output will be.
You are advised to adjust top_p or temperature parameters based on application
scenarios, but do not adjust the two parameters at the same time.
"""
top_p: float = 0.7
"""
Another method of sampling temperature is called nuclear sampling. The value
ranges from 0.0 to 1.0 and cannot be equal to 0 or 1.
The model considers the results with top_p probability quality tokens.
For example, 0.1 means that the model decoder only considers tokens from the
top 10% probability of the candidate set.
You are advised to adjust top_p or temperature parameters based on application
scenarios, but do not adjust the two parameters at the same time.
"""
streaming: bool = False
"""Whether to stream the results or not."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
class Config:
allow_population_by_field_name = True
@root_validator(pre=True)
def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]:
values["zhipuai_api_key"] = get_from_dict_or_env(
values, ["zhipuai_api_key", "api_key"], "ZHIPUAI_API_KEY"
)
values["zhipuai_api_base"] = get_from_dict_or_env(
values, "zhipuai_api_base", "ZHIPUAI_API_BASE", default=ZHIPUAI_API_BASE
)
return values
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._default_params
if stop is not None:
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
generations = []
if not isinstance(response, dict):
response = response.dict()
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
generation_info = dict(finish_reason=res.get("finish_reason"))
generations.append(
ChatGeneration(message=message, generation_info=generation_info)
)
token_usage = response.get("usage", {})
llm_output = {
"token_usage": token_usage,
"model_name": self.model_name,
}
return ChatResult(generations=generations, llm_output=llm_output)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
"""Generate a chat response."""
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
if self.zhipuai_api_key is None:
raise ValueError("Did not find zhipuai_api_key.")
message_dicts, params = self._create_message_dicts(messages, stop)
payload = {
**params,
**kwargs,
"messages": message_dicts,
"stream": False,
}
_truncate_params(payload)
headers = {
"Authorization": _get_jwt_token(self.zhipuai_api_key),
"Accept": "application/json",
}
import httpx
with httpx.Client(headers=headers, timeout=60) as client:
response = client.post(self.zhipuai_api_base, json=payload) # type: ignore[arg-type]
response.raise_for_status()
return self._create_chat_result(response.json())
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Stream the chat response in chunks."""
if self.zhipuai_api_key is None:
raise ValueError("Did not find zhipuai_api_key.")
if self.zhipuai_api_base is None:
raise ValueError("Did not find zhipu_api_base.")
message_dicts, params = self._create_message_dicts(messages, stop)
payload = {**params, **kwargs, "messages": message_dicts, "stream": True}
_truncate_params(payload)
headers = {
"Authorization": _get_jwt_token(self.zhipuai_api_key),
"Accept": "application/json",
}
default_chunk_class = AIMessageChunk
import httpx
with httpx.Client(headers=headers, timeout=60) as client:
with connect_sse(
client, "POST", self.zhipuai_api_base, json=payload
) as event_source:
for sse in event_source.iter_sse():
chunk = json.loads(sse.data)
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
finish_reason = choice.get("finish_reason", None)
generation_info = (
{"finish_reason": finish_reason}
if finish_reason is not None
else None
)
chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
if finish_reason is not None:
break
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
if self.zhipuai_api_key is None:
raise ValueError("Did not find zhipuai_api_key.")
message_dicts, params = self._create_message_dicts(messages, stop)
payload = {
**params,
**kwargs,
"messages": message_dicts,
"stream": False,
}
_truncate_params(payload)
headers = {
"Authorization": _get_jwt_token(self.zhipuai_api_key),
"Accept": "application/json",
}
import httpx
async with httpx.AsyncClient(headers=headers, timeout=60) as client:
response = await client.post(self.zhipuai_api_base, json=payload) # type: ignore[arg-type]
response.raise_for_status()
return self._create_chat_result(response.json())
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
if self.zhipuai_api_key is None:
raise ValueError("Did not find zhipuai_api_key.")
if self.zhipuai_api_base is None:
raise ValueError("Did not find zhipu_api_base.")
message_dicts, params = self._create_message_dicts(messages, stop)
payload = {**params, **kwargs, "messages": message_dicts, "stream": True}
_truncate_params(payload)
headers = {
"Authorization": _get_jwt_token(self.zhipuai_api_key),
"Accept": "application/json",
}
default_chunk_class = AIMessageChunk
import httpx
async with httpx.AsyncClient(headers=headers, timeout=60) as client:
async with aconnect_sse(
client, "POST", self.zhipuai_api_base, json=payload
) as event_source:
async for sse in event_source.aiter_sse():
chunk = json.loads(sse.data)
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
finish_reason = choice.get("finish_reason", None)
generation_info = (
{"finish_reason": finish_reason}
if finish_reason is not None
else None
)
chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info
)
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
if finish_reason is not None:
break
[docs] def with_structured_output(
self,
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
*,
method: Literal["function_calling", "json_mode"] = "function_calling",
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be. If
`method` is "function_calling" and `schema` is a dict, then the dict
must match the OpenAI function-calling spec.
method: The method for steering model generation, either "function_calling"
or "json_mode". ZhipuAI only supports "function_calling" which
converts the schema to a OpenAI function and the model will make use of the
function-calling API.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes any ChatModel input and returns as output:
If include_raw is True then a dict with keys:
raw: BaseMessage
parsed: Optional[_DictOrPydantic]
parsing_error: Optional[BaseException]
If include_raw is False then just _DictOrPydantic is returned,
where _DictOrPydantic depends on the schema:
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
class.
If schema is a dict then _DictOrPydantic is a dict.
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
.. code-block:: python
from langchain_community.chat_models import ChatZhipuAI
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatZhipuAI(temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> AnswerWithJustification(
# answer='A pound of bricks and a pound of feathers weigh the same.'
# justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."
# )
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
.. code-block:: python
from langchain_community.chat_models import ChatZhipuAI
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatZhipuAI(temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'),
# 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."),
# 'parsing_error': None
# }
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
.. code-block:: python
from langchain_community.chat_models import ChatZhipuAI
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatZhipuAI(temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'answer': 'A pound of bricks and a pound of feathers weigh the same.',
# 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'}
# }
""" # noqa: E501
if kwargs:
raise ValueError(f"Received unsupported arguments {kwargs}")
is_pydantic_schema = _is_pydantic_class(schema)
if method == "function_calling":
if schema is None:
raise ValueError(
"schema must be specified when method is 'function_calling'. "
"Received None."
)
tool_name = convert_to_openai_tool(schema)["function"]["name"]
llm = self.bind_tools([schema], tool_choice="auto")
if is_pydantic_schema:
output_parser: OutputParserLike = PydanticToolsParser(
tools=[schema], # type: ignore[list-item]
first_tool_only=True, # type: ignore[list-item]
)
else:
output_parser = JsonOutputKeyToolsParser(
key_name=tool_name, first_tool_only=True
)
else:
raise ValueError(
f"""Unrecognized method argument. Expected 'function_calling'.
Received: '{method}'"""
)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser