Source code for langchain_community.chat_models.zhipuai

"""ZhipuAI chat models wrapper."""

from __future__ import annotations

import json
import logging
import time
from collections.abc import AsyncIterator, Iterator
from contextlib import asynccontextmanager, contextmanager
from operator import itemgetter
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
    JsonOutputKeyToolsParser,
    PydanticToolsParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool

logger = logging.getLogger(__name__)

API_TOKEN_TTL_SECONDS = 3 * 60
ZHIPUAI_API_BASE = "https://open.bigmodel.cn/api/paas/v4/chat/completions"


def _is_pydantic_class(obj: Any) -> bool:
    return isinstance(obj, type) and issubclass(obj, BaseModel)


[docs]@contextmanager def connect_sse(client: Any, method: str, url: str, **kwargs: Any) -> Iterator: """Context manager for connecting to an SSE stream. Args: client: The HTTP client. method: The HTTP method. url: The URL. kwargs: Additional keyword arguments. Yields: The event source. """ from httpx_sse import EventSource with client.stream(method, url, **kwargs) as response: yield EventSource(response)
[docs]@asynccontextmanager async def aconnect_sse( client: Any, method: str, url: str, **kwargs: Any ) -> AsyncIterator: """Async context manager for connecting to an SSE stream. Args: client: The HTTP client. method: The HTTP method. url: The URL. kwargs: Additional keyword arguments. Yields: The event source. """ from httpx_sse import EventSource async with client.stream(method, url, **kwargs) as response: yield EventSource(response)
def _get_jwt_token(api_key: str) -> str: """Gets JWT token for ZhipuAI API. See 'https://open.bigmodel.cn/dev/api#nosdk'. Args: api_key: The API key for ZhipuAI API. Returns: The JWT token. """ import jwt try: id, secret = api_key.split(".") except ValueError as err: raise ValueError(f"Invalid API key: {api_key}") from err payload = { "api_key": id, "exp": int(round(time.time() * 1000)) + API_TOKEN_TTL_SECONDS * 1000, "timestamp": int(round(time.time() * 1000)), } return jwt.encode( payload, secret, algorithm="HS256", headers={"alg": "HS256", "sign_type": "SIGN"}, ) def _convert_dict_to_message(dct: Dict[str, Any]) -> BaseMessage: role = dct.get("role") content = dct.get("content", "") if role == "system": return SystemMessage(content=content) if role == "user": return HumanMessage(content=content) if role == "assistant": additional_kwargs = {} tool_calls = dct.get("tool_calls", None) if tool_calls is not None: additional_kwargs["tool_calls"] = tool_calls return AIMessage(content=content, additional_kwargs=additional_kwargs) return ChatMessage(role=role, content=content) # type: ignore[arg-type] def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]: """Convert a LangChain message to a dictionary. Args: message: The LangChain message. Returns: The dictionary. """ message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} else: raise TypeError(f"Got unknown type '{message.__class__.__name__}'.") return message_dict def _convert_delta_to_message_chunk( dct: Dict[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = dct.get("role") content = dct.get("content", "") additional_kwargs = {} tool_calls = dct.get("tool_call", None) if tool_calls is not None: additional_kwargs["tool_calls"] = tool_calls if role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) if role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) if role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] return default_class(content=content) # type: ignore[call-arg] def _truncate_params(payload: Dict[str, Any]) -> None: """Truncate temperature and top_p parameters between [0.01, 0.99]. ZhipuAI only support temperature / top_p between (0, 1) open interval, so we truncate them to [0.01, 0.99]. """ temperature = payload.get("temperature") top_p = payload.get("top_p") if temperature is not None: payload["temperature"] = max(0.01, min(0.99, temperature)) if top_p is not None: payload["top_p"] = max(0.01, min(0.99, top_p))
[docs]class ChatZhipuAI(BaseChatModel): """ZhipuAI chat model integration. Setup: Install ``PyJWT`` and set environment variable ``ZHIPUAI_API_KEY`` .. code-block:: bash pip install pyjwt export ZHIPUAI_API_KEY="your-api-key" Key init args — completion params: model: Optional[str] Name of ZhipuAI model to use. temperature: float Sampling temperature. max_tokens: Optional[int] Max number of tokens to generate. Key init args — client params: api_key: Optional[str] ZhipuAI API key. If not passed in will be read from env var ZHIPUAI_API_KEY. api_base: Optional[str] Base URL for API requests. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_community.chat_models import ChatZhipuAI zhipuai_chat = ChatZhipuAI( temperature=0.5, api_key="your-api-key", model="glm-4", # api_base="...", # other params... ) Invoke: .. code-block:: python messages = [ ("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"), ("human", "我喜欢编程。"), ] zhipuai_chat.invoke(messages) .. code-block:: python AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-c5d9af91-55c6-470e-9545-02b2fa0d7f9d-0') Stream: .. code-block:: python for chunk in zhipuai_chat.stream(messages): print(chunk) .. code-block:: python content='I' id='run-4df71729-618f-4e2b-a4ff-884682723082' content=' enjoy' id='run-4df71729-618f-4e2b-a4ff-884682723082' content=' programming' id='run-4df71729-618f-4e2b-a4ff-884682723082' content='.' id='run-4df71729-618f-4e2b-a4ff-884682723082' content='' response_metadata={'finish_reason': 'stop'} id='run-4df71729-618f-4e2b-a4ff-884682723082' .. code-block:: python stream = zhipuai_chat.stream(messages) full = next(stream) for chunk in stream: full += chunk full .. code-block:: AIMessageChunk(content='I enjoy programming.', response_metadata={'finish_reason': 'stop'}, id='run-20b05040-a0b4-4715-8fdc-b39dba9bfb53') Async: .. code-block:: python await zhipuai_chat.ainvoke(messages) # stream: # async for chunk in zhipuai_chat.astream(messages): # print(chunk) # batch: # await zhipuai_chat.abatch([messages]) .. code-block:: python [AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-ba06af9d-4baa-40b2-9298-be9c62aa0849-0')] Response metadata .. code-block:: python ai_msg = zhipuai_chat.invoke(messages) ai_msg.response_metadata .. code-block:: python {'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'} """ # noqa: E501 @property def lc_secrets(self) -> Dict[str, str]: return {"zhipuai_api_key": "ZHIPUAI_API_KEY"} @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "zhipuai"] @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.zhipuai_api_base: attributes["zhipuai_api_base"] = self.zhipuai_api_base return attributes @property def _llm_type(self) -> str: """Return the type of chat model.""" return "zhipuai-chat" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" params = { "model": self.model_name, "stream": self.streaming, "temperature": self.temperature, } if self.max_tokens is not None: params["max_tokens"] = self.max_tokens return params # client: zhipuai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `ZHIPUAI_API_KEY` if not provided.""" zhipuai_api_base: Optional[str] = Field(default=None, alias="api_base") """Base URL path for API requests, leave blank if not using a proxy or service emulator. """ model_name: Optional[str] = Field(default="glm-4", alias="model") """ Model name to use, see 'https://open.bigmodel.cn/dev/api#language'. Alternatively, you can use any fine-tuned model from the GLM series. """ temperature: float = 0.95 """ What sampling temperature to use. The value ranges from 0.0 to 1.0 and cannot be equal to 0. The larger the value, the more random and creative the output; The smaller the value, the more stable or certain the output will be. You are advised to adjust top_p or temperature parameters based on application scenarios, but do not adjust the two parameters at the same time. """ top_p: float = 0.7 """ Another method of sampling temperature is called nuclear sampling. The value ranges from 0.0 to 1.0 and cannot be equal to 0 or 1. The model considers the results with top_p probability quality tokens. For example, 0.1 means that the model decoder only considers tokens from the top 10% probability of the candidate set. You are advised to adjust top_p or temperature parameters based on application scenarios, but do not adjust the two parameters at the same time. """ streaming: bool = False """Whether to stream the results or not.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: allow_population_by_field_name = True @root_validator(pre=True) def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["zhipuai_api_key"] = get_from_dict_or_env( values, ["zhipuai_api_key", "api_key"], "ZHIPUAI_API_KEY" ) values["zhipuai_api_base"] = get_from_dict_or_env( values, "zhipuai_api_base", "ZHIPUAI_API_BASE", default=ZHIPUAI_API_BASE ) return values def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._default_params if stop is not None: params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: generations = [] if not isinstance(response, dict): response = response.dict() for res in response["choices"]: message = _convert_dict_to_message(res["message"]) generation_info = dict(finish_reason=res.get("finish_reason")) generations.append( ChatGeneration(message=message, generation_info=generation_info) ) token_usage = response.get("usage", {}) llm_output = { "token_usage": token_usage, "model_name": self.model_name, } return ChatResult(generations=generations, llm_output=llm_output) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: """Generate a chat response.""" should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) if self.zhipuai_api_key is None: raise ValueError("Did not find zhipuai_api_key.") message_dicts, params = self._create_message_dicts(messages, stop) payload = { **params, **kwargs, "messages": message_dicts, "stream": False, } _truncate_params(payload) headers = { "Authorization": _get_jwt_token(self.zhipuai_api_key), "Accept": "application/json", } import httpx with httpx.Client(headers=headers, timeout=60) as client: response = client.post(self.zhipuai_api_base, json=payload) # type: ignore[arg-type] response.raise_for_status() return self._create_chat_result(response.json()) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: """Stream the chat response in chunks.""" if self.zhipuai_api_key is None: raise ValueError("Did not find zhipuai_api_key.") if self.zhipuai_api_base is None: raise ValueError("Did not find zhipu_api_base.") message_dicts, params = self._create_message_dicts(messages, stop) payload = {**params, **kwargs, "messages": message_dicts, "stream": True} _truncate_params(payload) headers = { "Authorization": _get_jwt_token(self.zhipuai_api_key), "Accept": "application/json", } default_chunk_class = AIMessageChunk import httpx with httpx.Client(headers=headers, timeout=60) as client: with connect_sse( client, "POST", self.zhipuai_api_base, json=payload ) as event_source: for sse in event_source.iter_sse(): chunk = json.loads(sse.data) if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason", None) generation_info = ( {"finish_reason": finish_reason} if finish_reason is not None else None ) chunk = ChatGenerationChunk( message=chunk, generation_info=generation_info ) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk if finish_reason is not None: break async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) if self.zhipuai_api_key is None: raise ValueError("Did not find zhipuai_api_key.") message_dicts, params = self._create_message_dicts(messages, stop) payload = { **params, **kwargs, "messages": message_dicts, "stream": False, } _truncate_params(payload) headers = { "Authorization": _get_jwt_token(self.zhipuai_api_key), "Accept": "application/json", } import httpx async with httpx.AsyncClient(headers=headers, timeout=60) as client: response = await client.post(self.zhipuai_api_base, json=payload) # type: ignore[arg-type] response.raise_for_status() return self._create_chat_result(response.json()) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: if self.zhipuai_api_key is None: raise ValueError("Did not find zhipuai_api_key.") if self.zhipuai_api_base is None: raise ValueError("Did not find zhipu_api_base.") message_dicts, params = self._create_message_dicts(messages, stop) payload = {**params, **kwargs, "messages": message_dicts, "stream": True} _truncate_params(payload) headers = { "Authorization": _get_jwt_token(self.zhipuai_api_key), "Accept": "application/json", } default_chunk_class = AIMessageChunk import httpx async with httpx.AsyncClient(headers=headers, timeout=60) as client: async with aconnect_sse( client, "POST", self.zhipuai_api_base, json=payload ) as event_source: async for sse in event_source.aiter_sse(): chunk = json.loads(sse.data) if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason", None) generation_info = ( {"finish_reason": finish_reason} if finish_reason is not None else None ) chunk = ChatGenerationChunk( message=chunk, generation_info=generation_info ) if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk if finish_reason is not None: break
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], *, tool_choice: Optional[ Union[dict, str, Literal["auto", "any", "none"], bool] ] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. tool_choice: Currently this can only be auto for this chat model. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ if self.model_name == "glm-4v": raise ValueError("glm-4v currently does not support tool calling") formatted_tools = [convert_to_openai_tool(tool) for tool in tools] if tool_choice and tool_choice != "auto": raise ValueError("ChatZhipuAI currently only supports `auto` tool choice") elif tool_choice and tool_choice == "auto": kwargs["tool_choice"] = tool_choice return self.bind(tools=formatted_tools, **kwargs)
[docs] def with_structured_output( self, schema: Optional[Union[Dict, Type[BaseModel]]] = None, *, method: Literal["function_calling", "json_mode"] = "function_calling", include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: """Model wrapper that returns outputs formatted to match the given schema. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If `method` is "function_calling" and `schema` is a dict, then the dict must match the OpenAI function-calling spec. method: The method for steering model generation, either "function_calling" or "json_mode". ZhipuAI only supports "function_calling" which converts the schema to a OpenAI function and the model will make use of the function-calling API. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input and returns as output: If include_raw is True then a dict with keys: raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException] If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema: If schema is a Pydantic class then _DictOrPydantic is the Pydantic class. If schema is a dict then _DictOrPydantic is a dict. Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatZhipuAI(temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='A pound of bricks and a pound of feathers weigh the same.' # justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same." # ) Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatZhipuAI(temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'), # 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."), # 'parsing_error': None # } Example: Function-calling, dict schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatZhipuAI(temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'A pound of bricks and a pound of feathers weigh the same.', # 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'} # } """ # noqa: E501 if kwargs: raise ValueError(f"Received unsupported arguments {kwargs}") is_pydantic_schema = _is_pydantic_class(schema) if method == "function_calling": if schema is None: raise ValueError( "schema must be specified when method is 'function_calling'. " "Received None." ) tool_name = convert_to_openai_tool(schema)["function"]["name"] llm = self.bind_tools([schema], tool_choice="auto") if is_pydantic_schema: output_parser: OutputParserLike = PydanticToolsParser( tools=[schema], # type: ignore[list-item] first_tool_only=True, # type: ignore[list-item] ) else: output_parser = JsonOutputKeyToolsParser( key_name=tool_name, first_tool_only=True ) else: raise ValueError( f"""Unrecognized method argument. Expected 'function_calling'. Received: '{method}'""" ) if include_raw: parser_assign = RunnablePassthrough.assign( parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None ) parser_none = RunnablePassthrough.assign(parsed=lambda _: None) parser_with_fallback = parser_assign.with_fallbacks( [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback else: return llm | output_parser