Source code for langchain_community.chat_models.openai

"""OpenAI chat wrapper."""

from __future__ import annotations

import logging
import os
import sys
from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessageChunk,
    FunctionMessageChunk,
    HumanMessageChunk,
    SystemMessageChunk,
    ToolMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import Runnable
from langchain_core.utils import (
    get_from_dict_or_env,
    get_pydantic_field_names,
    pre_init,
)

from langchain_community.adapters.openai import (
    convert_dict_to_message,
    convert_message_to_dict,
)
from langchain_community.utils.openai import is_openai_v1

if TYPE_CHECKING:
    import tiktoken


logger = logging.getLogger(__name__)


def _import_tiktoken() -> Any:
    try:
        import tiktoken
    except ImportError:
        raise ImportError(
            "Could not import tiktoken python package. "
            "This is needed in order to calculate get_token_ids. "
            "Please install it with `pip install tiktoken`."
        )
    return tiktoken


def _create_retry_decorator(
    llm: ChatOpenAI,
    run_manager: Optional[
        Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
    ] = None,
) -> Callable[[Any], Any]:
    import openai

    errors = [
        openai.error.Timeout,
        openai.error.APIError,
        openai.error.APIConnectionError,
        openai.error.RateLimitError,
        openai.error.ServiceUnavailableError,
    ]
    return create_base_retry_decorator(
        error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
    )


[docs]async def acompletion_with_retry( llm: ChatOpenAI, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" if is_openai_v1(): return await llm.async_client.create(**kwargs) retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs)
def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" additional_kwargs: Dict = {} if _dict.get("function_call"): function_call = dict(_dict["function_call"]) if "name" in function_call and function_call["name"] is None: function_call["name"] = "" additional_kwargs["function_call"] = function_call if _dict.get("tool_calls"): additional_kwargs["tool_calls"] = _dict["tool_calls"] if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict["name"]) elif role == "tool" or default_class == ToolMessageChunk: return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"]) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] else: return default_class(content=content) # type: ignore[call-arg]
[docs]@deprecated( since="0.0.10", removal="0.3.0", alternative_import="langchain_openai.ChatOpenAI" ) class ChatOpenAI(BaseChatModel): """`OpenAI` Chat large language models API. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_community.chat_models import ChatOpenAI openai = ChatOpenAI(model="gpt-3.5-turbo") """ @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "openai"] @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.openai_organization: attributes["openai_organization"] = self.openai_organization if self.openai_api_base: attributes["openai_api_base"] = self.openai_api_base if self.openai_proxy: attributes["openai_proxy"] = self.openai_proxy return attributes @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" # When updating this to use a SecretStr # Check for classes that derive from this class (as some of them # may assume openai_api_key is a str) openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_organization: Optional[str] = Field(default=None, alias="organization") """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.""" max_retries: int = Field(default=2) """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: Union[Any, None] = None """Optional httpx.Client.""" class Config: allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): client_params = { "api_key": values["openai_api_key"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } if not values.get("client"): values["client"] = openai.OpenAI(**client_params).chat.completions if not values.get("async_client"): values["async_client"] = openai.AsyncOpenAI( **client_params ).chat.completions elif not values.get("client"): values["client"] = openai.ChatCompletion else: pass return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" params = { "model": self.model_name, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } if self.max_tokens is not None: params["max_tokens"] = self.max_tokens if self.request_timeout is not None and not is_openai_v1(): params["request_timeout"] = self.request_timeout return params
[docs] def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" if is_openai_v1(): return self.client.create(**kwargs) retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs)
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} system_fingerprint = None for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] if token_usage is not None: for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v if system_fingerprint is None: system_fingerprint = output.get("system_fingerprint") combined = {"token_usage": overall_token_usage, "model_name": self.model_name} if system_fingerprint: combined["system_fingerprint"] = system_fingerprint return combined def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk for chunk in self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ): if not isinstance(chunk, dict): chunk = chunk.dict() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ cg_chunk = ChatGenerationChunk( message=chunk, generation_info=generation_info ) if run_manager: run_manager.on_llm_new_token(cg_chunk.text, chunk=cg_chunk) yield cg_chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = { **params, **({"stream": stream} if stream is not None else {}), **kwargs, } response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: generations = [] if not isinstance(response, dict): response = response.dict() for res in response["choices"]: message = convert_dict_to_message(res["message"]) generation_info = dict(finish_reason=res.get("finish_reason")) if "logprobs" in res: generation_info["logprobs"] = res["logprobs"] gen = ChatGeneration( message=message, generation_info=generation_info, ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = { "token_usage": token_usage, "model_name": self.model_name, "system_fingerprint": response.get("system_fingerprint", ""), } return ChatResult(generations=generations, llm_output=llm_output) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk async for chunk in await acompletion_with_retry( self, messages=message_dicts, run_manager=run_manager, **params ): if not isinstance(chunk, dict): chunk = chunk.dict() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ cg_chunk = ChatGenerationChunk( message=chunk, generation_info=generation_info ) if run_manager: await run_manager.on_llm_new_token(token=cg_chunk.text, chunk=cg_chunk) yield cg_chunk async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = { **params, **({"stream": stream} if stream is not None else {}), **kwargs, } response = await acompletion_with_retry( self, messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the openai client.""" openai_creds: Dict[str, Any] = { "model": self.model_name, } if not is_openai_v1(): openai_creds.update( { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, } ) if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} return {**self._default_params, **openai_creds} def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" return { "model": self.model_name, **super()._get_invocation_params(stop=stop), **self._default_params, **kwargs, } @property def _llm_type(self) -> str: """Return type of chat model.""" return "openai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() if self.tiktoken_model_name is not None: model = self.tiktoken_model_name else: model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding
[docs] def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text)
[docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model.startswith("gpt-3.5-turbo-0301"): # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"): tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): # Cast str(value) in case the message value is not a string # This occurs with function messages num_tokens += len(encoding.encode(str(value))) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
[docs] def bind_functions( self, functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], function_call: Optional[str] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind functions (and other objects) to this chat model. Args: functions: A list of function definitions to bind to this chat model. Can be a dictionary, pydantic model, or callable. Pydantic models and callables will be automatically converted to their schema dictionary representation. function_call: Which function to require the model to call. Must be the name of the single provided function or "auto" to automatically determine which function to call (if any). kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ from langchain.chains.openai_functions.base import convert_to_openai_function formatted_functions = [convert_to_openai_function(fn) for fn in functions] if function_call is not None: if len(formatted_functions) != 1: raise ValueError( "When specifying `function_call`, you must provide exactly one " "function." ) if formatted_functions[0]["name"] != function_call: raise ValueError( f"Function call {function_call} was specified, but the only " f"provided function was {formatted_functions[0]['name']}." ) function_call_ = {"name": function_call} kwargs = {**kwargs, "function_call": function_call_} return super().bind( functions=formatted_functions, **kwargs, )