Source code for langchain_community.chat_models.deepinfra

"""deepinfra.com chat models wrapper"""

from __future__ import annotations

import json
import logging
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

import aiohttp
import requests
from langchain_core.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
    ToolMessage,
)
from langchain_core.messages.tool import ToolCall
from langchain_core.messages.tool import tool_call as create_tool_call
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool

from langchain_community.utilities.requests import Requests

logger = logging.getLogger(__name__)


[docs]class ChatDeepInfraException(Exception): """Exception raised when the DeepInfra API returns an error.""" pass
def _create_retry_decorator( llm: ChatDeepInfra, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: """Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions.""" return create_base_retry_decorator( error_types=[requests.exceptions.ConnectTimeout, ChatDeepInfraException], max_retries=llm.max_retries, run_manager=run_manager, ) def _parse_tool_calling(tool_call: dict) -> ToolCall: """ Convert a tool calling response from server to a ToolCall object. Args: tool_call: Returns: """ name = tool_call["function"].get("name", "") args = json.loads(tool_call["function"]["arguments"]) id = tool_call.get("id") return create_tool_call(name=name, args=args, id=id) def _convert_to_tool_calling(tool_call: ToolCall) -> Dict[str, Any]: """ Convert a ToolCall object to a tool calling request for server. Args: tool_call: Returns: """ return { "type": "function", "function": { "arguments": json.dumps(tool_call["args"]), "name": tool_call["name"], }, "id": tool_call.get("id"), } def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": content = _dict.get("content", "") or "" tool_calls_content = _dict.get("tool_calls", []) or [] tool_calls = [ _parse_tool_calling(tool_call) for tool_call in tool_calls_content ] return AIMessage(content=content, tool_calls=tool_calls) elif role == "system": return SystemMessage(content=_dict["content"]) elif role == "function": return FunctionMessage(content=_dict["content"], name=_dict["name"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: tool_calls = [ _parse_tool_calling(tool_call) for tool_call in _dict.get("tool_calls", []) ] return AIMessageChunk(content=content, tool_calls=tool_calls) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict["name"]) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type] else: return default_class(content=content) # type: ignore[call-arg] def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): tool_calls = [ _convert_to_tool_calling(tool_call) for tool_call in message.tool_calls ] message_dict = { "role": "assistant", "content": message.content, "tool_calls": tool_calls, # type: ignore[dict-item] } elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } elif isinstance(message, ToolMessage): message_dict = { "role": "tool", "content": message.content, "name": message.name, # type: ignore[dict-item] "tool_call_id": message.tool_call_id, } else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict
[docs]class ChatDeepInfra(BaseChatModel): """A chat model that uses the DeepInfra API.""" # client: Any #: :meta private: model_name: str = Field(default="meta-llama/Llama-2-70b-chat-hf", alias="model") """Model name to use.""" deepinfra_api_token: Optional[str] = None request_timeout: Optional[float] = Field(default=None, alias="timeout") temperature: Optional[float] = 1 model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Run inference with this temperature. Must be in the closed interval [0.0, 1.0].""" top_p: Optional[float] = None """Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" top_k: Optional[int] = None """Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.""" n: int = 1 """Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated.""" max_tokens: int = 256 streaming: bool = False max_retries: int = 1 @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, "request_timeout": self.request_timeout, **self.model_kwargs, } @property def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the openai client.""" return {**self._default_params}
[docs] def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: try: request_timeout = kwargs.pop("request_timeout") request = Requests(headers=self._headers()) response = request.post( url=self._url(), data=self._body(kwargs), timeout=request_timeout ) self._handle_status(response.status_code, response.text) return response except Exception as e: # import pdb; pdb.set_trace() print("EX", e) # noqa: T201 raise return _completion_with_retry(**kwargs)
[docs] async def acompletion_with_retry( self, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: try: request_timeout = kwargs.pop("request_timeout") request = Requests(headers=self._headers()) async with request.apost( url=self._url(), data=self._body(kwargs), timeout=request_timeout ) as response: self._handle_status(response.status, response.text) return await response.json() except Exception as e: print("EX", e) # noqa: T201 raise return await _completion_with_retry(**kwargs)
@root_validator(pre=True) def init_defaults(cls, values: Dict) -> Dict: """Validate api key, python package exists, temperature, top_p, and top_k.""" # For compatibility with LiteLLM api_key = get_from_dict_or_env( values, "deepinfra_api_key", "DEEPINFRA_API_KEY", default="", ) values["deepinfra_api_token"] = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN", default=api_key, ) return values @root_validator(pre=False, skip_on_failure=True) def validate_environment(cls, values: Dict) -> Dict: if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") if values["top_k"] is not None and values["top_k"] <= 0: raise ValueError("top_k must be positive") return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response.json()) def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = {"token_usage": token_usage, "model": self.model_name} res = ChatResult(generations=generations, llm_output=llm_output) return res def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) for line in _parse_stream(response.iter_lines()): chunk = _handle_sse_line(line) if chunk: cg_chunk = ChatGenerationChunk(message=chunk, generation_info=None) if run_manager: run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk) yield cg_chunk async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {"messages": message_dicts, "stream": True, **params, **kwargs} request_timeout = params.pop("request_timeout") request = Requests(headers=self._headers()) async with request.apost( url=self._url(), data=self._body(params), timeout=request_timeout ) as response: async for line in _parse_stream_async(response.content): chunk = _handle_sse_line(line) if chunk: cg_chunk = ChatGenerationChunk(message=chunk, generation_info=None) if run_manager: await run_manager.on_llm_new_token( str(chunk.content), chunk=cg_chunk ) yield cg_chunk async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {"messages": message_dicts, **params, **kwargs} res = await self.acompletion_with_retry(run_manager=run_manager, **params) return self._create_chat_result(res) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model_name, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "n": self.n, } @property def _llm_type(self) -> str: return "deepinfra-chat" def _handle_status(self, code: int, text: Any) -> None: if code >= 500: raise ChatDeepInfraException(f"DeepInfra Server: Error {code}") elif code >= 400: raise ValueError(f"DeepInfra received an invalid payload: {text}") elif code != 200: raise Exception( f"DeepInfra returned an unexpected response with status " f"{code}: {text}" ) def _url(self) -> str: return "https://stage.api.deepinfra.com/v1/openai/chat/completions" def _headers(self) -> Dict: return { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } def _body(self, kwargs: Any) -> Dict: return kwargs
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Assumes model is compatible with OpenAI tool-calling API. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ formatted_tools = [convert_to_openai_tool(tool) for tool in tools] return super().bind(tools=formatted_tools, **kwargs)
def _parse_stream(rbody: Iterator[bytes]) -> Iterator[str]: for line in rbody: _line = _parse_stream_helper(line) if _line is not None: yield _line async def _parse_stream_async(rbody: aiohttp.StreamReader) -> AsyncIterator[str]: async for line in rbody: _line = _parse_stream_helper(line) if _line is not None: yield _line def _parse_stream_helper(line: bytes) -> Optional[str]: if line and line.startswith(b"data:"): if line.startswith(b"data: "): # SSE event may be valid when it contain whitespace line = line[len(b"data: ") :] else: line = line[len(b"data:") :] if line.strip() == b"[DONE]": # return here will cause GeneratorExit exception in urllib3 # and it will close http connection with TCP Reset return None else: return line.decode("utf-8") return None def _handle_sse_line(line: str) -> Optional[BaseMessageChunk]: try: obj = json.loads(line) default_chunk_class = AIMessageChunk delta = obj.get("choices", [{}])[0].get("delta", {}) return _convert_delta_to_message_chunk(delta, default_chunk_class) except Exception: return None