Source code for langchain_astradb.utils.mmr

"""
Tools for the Maximal Marginal Relevance (MMR) reranking.
Duplicated from langchain_community to avoid cross-dependencies.

Functions "maximal_marginal_relevance" and "cosine_similarity"
are duplicated in this utility respectively from modules:
    - "libs/community/langchain_community/vectorstores/utils.py"
    - "libs/community/langchain_community/utils/math.py"
"""

import logging
from typing import List, Union

import numpy as np

logger = logging.getLogger(__name__)

Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray]


[docs]def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices.""" if len(X) == 0 or len(Y) == 0: return np.array([]) X = np.array(X) Y = np.array(Y) if X.shape[1] != Y.shape[1]: raise ValueError( f"Number of columns in X and Y must be the same. X has shape {X.shape} " f"and Y has shape {Y.shape}." ) try: import simsimd as simd # type: ignore X = np.array(X, dtype=np.float32) Y = np.array(Y, dtype=np.float32) Z = 1 - simd.cdist(X, Y, metric="cosine") if isinstance(Z, float): return np.array([Z]) return Z except ImportError: logger.info( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) X_norm = np.linalg.norm(X, axis=1) Y_norm = np.linalg.norm(Y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity
[docs]def maximal_marginal_relevance( query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> List[int]: """Calculate maximal marginal relevance.""" if min(k, len(embedding_list)) <= 0: return [] if query_embedding.ndim == 1: query_embedding = np.expand_dims(query_embedding, axis=0) similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0] most_similar = int(np.argmax(similarity_to_query)) idxs = [most_similar] selected = np.array([embedding_list[most_similar]]) while len(idxs) < min(k, len(embedding_list)): best_score = -np.inf idx_to_add = -1 similarity_to_selected = cosine_similarity(embedding_list, selected) for i, query_score in enumerate(similarity_to_query): if i in idxs: continue redundant_score = max(similarity_to_selected[i]) equation_score = ( lambda_mult * query_score - (1 - lambda_mult) * redundant_score ) if equation_score > best_score: best_score = equation_score idx_to_add = i idxs.append(idx_to_add) selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) return idxs